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ABSTRACT

The magnetic field in the solar corona is usually extrapolated from a photospheric vector magnetogram using a
nonlinear force-free field (NLFFF) model. NLFFF extrapolation needs considerable effort to be devoted to its
numerical realization. In this paper, we present a new implementation of the magnetohydrodynamics (MHD)
relaxation method for NLFFF extrapolation. The magnetofrictional approach, which is introduced for speeding the
relaxation of the MHD system, is realized for the first time by the spacetime conservation-element and solution-
element scheme. A magnetic field splitting method is used to further improve the computational accuracy. The
bottom boundary condition is prescribed by incrementally changing the transverse field to match the magnetogram,
and all other artificial boundaries of the computational box are simply fixed. We examine the code using two types
of NLFFF benchmark tests, the Low & Lou semi-analytic force-free solutions and a more realistic solar-like case
constructed by van Ballegooijen et al. The results show that our implementation is successful and versatile for
extrapolations of either the relatively simple cases or the rather complex cases that need significant rebuilding of
the magnetic topology, e.g., a flux rope. We also compute a suite of metrics to quantitatively analyze the results
and demonstrate that the performance of our code in extrapolation accuracy basically reaches the same level of the
present best-performing code, i.e., that developed by Wiegelmann.
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1. INTRODUCTION

The magnetic field’s configuration is essential for us to under-
stand solar explosive phenomena such as flares and coronal mass
ejections. In addition, the magnetic field also plays a crucial role
in determining the slowly evolving structures of the solar corona
such as the coronal streamers and the coronal holes. However,
direct measurements of these magnetic fields are very difficult to
implement, and the present observations for the magnetic fields
based on the spectropolarimetric method (the Zeeman and the
Hanle effects) are basically restricted to the visible surface layer,
i.e., the photosphere. Even a routine recording of the full surface
fields on the photosphere is only available for the line-of-sight
(LoS) component (e.g., the daily disk magnetogram provided
by the Solar and Heliospheric Observatory (SOHO) Michelson
Doppler Imager). Most of the vector magnetograms at present
are locally recorded for active regions and some of them may be
unreliable because of large random errors and the 180◦ ambi-
guity. Hence, in view of these limitations, researchers resort to
using physical models to extrapolate (or reconstruct) the coronal
fields from the observable photospheric magnetogram (Sakurai
1989; Aly 1989; Amari et al. 1997; McClymont et al. 1997;
Aschwanden 2005; Wiegelmann 2008).

On a large scale with relatively low resolution, the corona
fields are usually extrapolated from the LoS magnetogram
with models, including the potential field source surface model
(Altschuler & Newkirk 1969; Hoeksema 1984) and the mag-
netohydrodynamic (MHD) models (Mikić et al. 1999; Linker
et al. 1999; Feng et al. 2007, 2010). With these models and
the global map of photospheric field, i.e., the synoptic map,
the extrapolated global fields can be used to study the general
structures of the corona and the heliosphere (e.g., the loca-
tions, shapes and sizes of coronal holes, coronal streamers, and

heliospheric current sheet, and their evolution). On a local scale
with high resolution, when one’s interest is focused on the active
regions, the most common and powerful way of reconstructing
the magnetic fields is the nonlinear force-free field (NLFFF)
extrapolation from the vector magnetogram. The force-free as-
sumption is a good approximation for fields in the low corona
but above the photosphere. This is because, in most parts of the
low corona, particularly the strongly magnetized active regions,
the plasma β (the ratio of gas pressure p to magnetic pressure
B2/(2μ0), i.e., β = 2μ0p/B2) is extremely low (β � 1) and the
plasma velocity v is also low compared with the Alfvén speed vA

(v � vA), which means that the pressure gradient, gravity, and
inertial force can be neglected from the momentum equation;
thus, the only surviving Lorentz force must be self-balanced,
i.e., j × B = 0 (where j is the electric current density and B is
the magnetic field). This means that ∇ × B = αB, where the
scalar α is the force-free parameter. Generally, α varies spatially
for the NLFFF and some popular simplifications include α = 0
for a potential field and α = constant for a linear force-free field.

The reasons why the nonlinear force-free model is superior
to other much simpler force-free models for the active regions,
i.e., the potential field and the linear force-free field models,
are mainly as follows (Wiegelmann 2008): (1) observation
shows that there are significant nonpotential fields in the active
regions, which exclude the potential model; (2) usually the
force-free parameter α is a very space-dependent function as
derived from the measured vector magnetogram and is also
demonstrated by a great contradiction of the observed loops
and linear force-free extrapolations; and (3) potential and linear
force-free fields are too simple to accurately estimate the free
magnetic energy and magnetic topology. On the other hand,
one may wonder why the more realistic model, the MHD
model (e.g., Wu et al. 2006, 2009), is less commonly used
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than the NLFFF model. The reason is twofold. First, there is
a lack of observed information for gas parameters such as the
surface plasma density and velocity, which are critical boundary
conditions for the full MHD simulations (Abbett & Fisher 2003;
Abbett et al. 2004; Welsch et al. 2004; Wang et al. 2011); second,
the numerical realization of a full MHD simulation is greatly
limited by the present computational capability. For instance, the
Courant–Friedrichs–Lewy (CFL) condition puts rather severe
restrictions on the size of the time step for most explicit schemes
because densities in the corona are very low while magnetic
field strengths in active regions can be quite high (∼kG); this
inescapably results in an extremely high Alfvén speed (Abbett
& Fisher 2003). The computational limitation of a full MHD
especially arises when it is applied to very high resolution and
the large-field-view magnetograms currently available.

A variety of numerical codes with different methods have
been proposed to implement the NLFFF extrapolations up to the
present. The underlying methods of these codes can be classified
into six types, including (1) the Grad–Rubin method (Grad &
Rubin 1958; Sakurai 1981; Amari et al. 1999, 2006; Wheatland
2004, 2006); (2) the upward integration method (Nakagawa
1974; Wu et al. 1990; Song et al. 2006); (3) the MHD-relaxation
method (Chodura & Schlueter 1981; Yang et al. 1986; Mikic
& McClymont 1994; Roumeliotis 1996; Valori et al. 2005,
2007; Jiang et al. 2011; Inoue et al. 2011); (4) the optimization
approach (Wheatland et al. 2000; Wiegelmann 2004, 2007;
Inhester & Wiegelmann 2006; Wiegelmann & Neukirch 2006);
(5) the boundary-element method (Yan & Sakurai 2000; Yan
& Li 2006; He & Wang 2008; He et al. 2011); and (6) the
most recently developed force-free electrodynamics method
(Contopoulos et al. 2011). The reader is referred to Wiegelmann
(2008) for a comprehensive review of many of these methods.
In addition to the difference in methods, the specific realizations
(i.e., the codes) differ significantly in many other aspects
from software to hardware, e.g., the mesh configuration, the
numerical scheme and boundary conditions, the language of the
code (i.e., IDL, C, or Fortran), the hardware architecture, and
the degree of parallelization. As a consequence, these codes
have very different computational speeds and extrapolation
accuracies from each other. Schrijver et al. (2006) and Metcalf
et al. (2008) have carried out detailed comparisons of some
representative codes using the semi-analytic Low & Lou’s force-
free solutions (Low & Lou 1990) and a Sun-like test case
constructed by van Ballegooijen et al. (2007), respectively.
They show that, although all the tested codes can achieve the
reference solutions qualitatively, the differences by quantity are
considerable. Their analysis points out that the implementation
of the method plays the same important role as its underlying
approach for causing such differences. In particular, they found
that the optimization method coded by Wiegelmann (2004) is
the fastest converging and the best-performing algorithm.

In our previous work (Jiang et al. 2011), we used a full-MHD-
relaxation method for reconstructing the corona field based on
our conservation-element and solution-element (CESE)-MHD
code (Feng et al. 2007; Jiang et al. 2010). We included both
the gravity and gas pressure of plasma in the model for a
more realistic emulation of the low corona. The relaxation is
solely dependent on a relatively small viscosity term ∇ · (νρ∇v)
(where ρ and v are the plasma density and velocity, respectively,
and ν is the viscosity) as done by (Mikic & McClymont
1994). It was demonstrated that the MHD-relaxation method,
combined with the established CESE-MHD code, can have
many advantages over other approaches, such as the simplicity

of the implementation, the high accuracy of the computation,
and the efficiency of the highly parallelized code. By using the
Low & Lou’s force-free benchmark, it was also found that our
implementation reconstructed a result comparable to the best
one by Wiegelmann (2004) reported in Schrijver et al. (2006),
which encouraged us to further the work of our method for more
realistic applications. It also proved that the force-free model is
a good assumption since we start directly from the full MHD
and finally reach a very force-free state. Recently, however, in
the experiment with the realistic magnetogram, we found that
the system is prone to produce very large velocity (of several
vA) when performed on magnetograms with a rather large
gradient, which is ordinary in realistic photospheric data. This
is because the discretization errors of the large-gradient regions
can cause large Lorentz forces, whereas the used viscosity ν is
too small to effectively control the motion driven by these forces.
Thus, this velocity severely restricts the time step and further
decreases the relaxation speed of the entire system. On the other
hand, increasing the viscosity may be useful for restricting the
plasma velocity, though it also significantly restricts the time
step because the CFL condition is

Δt < 0.5
Δx2

ν
, (1)

where Δx and Δt are the mesh spacing in space and time,
respectively. A time step that is too small is particularly
unfavorable for the CESE scheme, which can produce excessive
numerical diffusion and lose accuracy (Chang 2002; Feng et al.
2010). Although dealing with this viscosity term can remarkably
remedy this problem, the cost is a huge complication of the
numerical scheme and parallelization. Moreover, for the case
of force-free extrapolation in which only the magnetic field
is solved, it obviously gives no payoff when considering the
computational restrictions of the full MHD model, e.g., the slow
evolution of the weak field and the additional computational
resources consumed by solving plasma density and pressure.

In this paper, we propose a new implementation of the
MHD-relaxation method for NLFFF extrapolation to avoid
the above shortcomings of our previous method. We now adopt
the magnetofrictional approach as used by Roumeliotis (1996)
and Valori et al. (2007), which explicitly introduces a frictional-
like force F = −νv to the momentum equation. By adjusting
the frictional parameter ν, one can control the relaxation of the
system more efficiently than by using the viscosity. Different
from the convectional form of the magnetofrictional equation
as used in Roumeliotis (1996), van Ballegooijen et al. (2000),
and Valori et al. (2007), which cannot be solved by many modern
computational fluid dynamics or MHD solvers designed for the
standard partial differential equation system such as

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= S, (2)

we use a form with the time-dependent term of momentum
reserved. We show that, through such modification, the equation
system can still be written in standard conservation form with
source terms, for which the CESE-MHD method is designed.
This paper also focuses on a comprehensive examination of the
implementation by applying the code to extrapolations of the
semi-analytic force-free solutions adopted by Schrijver et al.
(2006, hereafter referred to as Paper I) and the more stringent
solar-like test used by Metcalf et al. (2008, hereafter referred to
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as Paper II). All these tests will be carried out with the same
conditions as much as possible (i.e., the same mesh resolution,
the same initial potential field, and the same artificial boundary
conditions), as in the above two papers, in order to perform
a rigid assessment and comparison with the results reported
there. We will show that, through this new implementation, we
successfully improved our method over the previous work of
Jiang et al. (2011). Quantitative comparisons of the results will
demonstrate that our performance of the extrapolation accuracy
basically reaches the same level of the present best-performing
code by Wiegelmann (2004) even for the rather stringent test
cases.

The remainder of the paper is organized as follows. In
Section 2, we describe the model equations and the numerical
implementation. In Section 3, we give a brief review of the
benchmark models used for testing the code. The metrics that
are used to evaluate the results of extrapolations are given in
Section 4 and the extrapolation results and comparisons are
reported and discussed in Section 5. Finally, we offer concluding
remarks and some outlooks in Section 6.

2. THE METHOD

2.1. The Magnetofrictional Equations

In the magnetofrictional method, an artificial frictional force
is introduced to the MHD momentum balance equation:

ρ
Dv
Dt

= ∂(ρv)

∂t
+ ∇ · (ρvv) = −∇p + ρg + J × B − νv, (3)

where current J = ∇ × B and ν is the frictional coefficient. In
situations for seeking a force-free field, the plasma pressure and
gravity can be neglected, which leads to the following zero-beta
equation:

ρ
Dv
Dt

= J × B − νv. (4)

By further discarding the inertial term, i.e., Dv/Dt = 0, it
finally gives the usually adopted form of the magnetofrictional
method (van Ballegooijen et al. 2000; Valori et al. 2007),

νv = J × B. (5)

This is simply a balance between the Lorentz force and the
friction term; thus, the velocity can be obtained explicitly in
terms of the magnetic field. This velocity from Equation (5) can
then be input to the magnetic induction equation:

∂B
∂t

= ∇ × (v × B), (6)

which drives the evolution of the magnetic field. Note that, with
such simplification, the only equation that needs solving is the
induction equation. A simple finite-difference method can be
used to solve it as long as the frictional coefficient is large
enough to suppress the potential numerical instability.

In this paper, we do not use the conventional form of the mag-
netofrictional equation. To utilize the existing CESE solver, we
partially reserve the inertial term in Equation (4). Specifically,
the time-dependent form of the momentum equation is retained
as follows:

∂(ρv)

∂t
= (∇ × B) × B − νρv, ρ = |B|2 + ρ0, (7)

where only the term ∇ · (ρvv) is omitted from Equation (4).
Here the density ρ is set for a nearly uniform Alfvén speed
to roughly equalize the speed of evolution of the entire field,
and a small value ρ0, e.g., ρ0 = 0.01, is necessary to deal
with a very weak field associated with the magnetic null. This
form is also different from the zero-beta model since the time
variation of momentum p = ρv is only locally induced by the
Lorentz force and the frictional term, without being affected by
the neighboring plasma. This has the benefit of using a rather
nonuniform density such as ρ ∝ B2.

For the induction equation, we use

∂B
∂t

= ∇ × (v × B) − v∇ · B + ∇(μ∇ · B). (8)

The terms −v∇·B and ∇(μ∇·B) added to the induction equation
are both aimed at controlling the numerical error of ∇ · B. The
first term, −v∇ · B, is derived from Powell’s eight-wave MHD
model (Powell et al. 1999) and the second term is a diffusive
control of ∇ · B (Marder 1987; Dedner et al. 2002) with a
diffusive coefficient μ. The effect of these control terms can
be seen explicitly by taking the divergence of the induction
equation:

∂ρm

∂t
= −∇ · (vρm) + ∇2(μρm), ρm = ∇ · B. (9)

Equation (9) shows that the numerical magnetic monopoles, ρm,
once derived (either because of the numerical error or from the
boundary conditions), cannot locally accumulate. Instead, they
are effectively convected with the velocity of the plasma v, and
meanwhile diffused among the computational volume with the
speed of μ.

Another modification is made by utilizing the so-called
magnetic field splitting form of the MHD equation originated
by Tanaka (1994). By dividing the full magnetic field B into
two parts (B = B0 + B1), an embedded constant field B0 and
a deviation B1, accuracy can be gained only by solving the
deviation. The magnetic splitting form is usually used for the
global simulation of the solar wind or its interaction with a
magnetized planet such as Earth (Tanaka 1994; Nakamizo et al.
2009; Feng et al. 2010), since a strong “intrinsic” potential
magnetic field is present in these cases. In the case of solving
a force-free field, a potential field that matches the normal
component of the magnetogram can be regarded as B0, which
is only induced by the current system below the bottom (i.e.,
the photosphere), while the deviation B1 can be seen as the
field only induced by the currents in the extrapolation volume
(above the photosphere). Then, the magnetic splitting form of
the magnetofrictional method for solving NLFFF reads as in a
complete system:

∂ρv
∂t

= (∇ × B1) × B − νρv,

∂B1

∂t
= ∇ × (v × B) + ∇(μ∇ · B1) − v∇ · B1,

∂B0

∂t
= 0, ∇ × B0 = 0, ∇ · B0 = 0,

ρ = |B|2 + ρ0, B = B0 + B1. (10)

A notable advantage of using the above equations is that
we can completely avoid the random numerical currents and
divergences remaining in the initial potential field that are
computed by Green’s function method or another numerical
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realization. It is commonly noted that, in the extrapolation box,
the currents are concentrated in the interior of the volume, while
the upper and the surrounding regions are dominated by the
relatively weak potential field (Schrijver et al. 2008; DeRosa
et al. 2009). Thus, the splitting form can retain the accuracy
of this field. Other merits of using the splitting equations will
be seen in the implementation of a multigrid-type optimization
(Section 2.2).

2.2. Numerical Implementation

The above equation system (10) can be written in a general
conservation form with source terms as follows:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

− ∂Fν

∂x
− ∂Gν

∂y
− ∂Hν

∂z
= S, (11)

with U = (ρv, B1, B0); other terms are given in the Appendix.
Then, we input these model equations to the CESE code, which
is designed for equations that can be written in the standard
form mentioned above. The CESE method deals with three-
dimensional governing equations in a substantially different
way that is unlike traditional numerical methods (e.g., the
finite-difference or finite-volume schemes). The key principle,
also a conceptual leap of the CESE method, is treating space
and time as one entity. By introducing the CESEs as the
vehicles for calculating the spacetime flux, the CESE method
can enforce conservation laws both locally and globally in
their natural spacetime unity form. Compared with many other
numerical schemes, the CESE method can achieve higher
accuracy with the same mesh resolution and provide simple
mathematics and coding free of any type of Riemann solver or
eigendecomposition. Thus, it can benefit for the nonhyperbolic
system like the present form of magnetofrictional model (10).
For more detailed descriptions of the CESE method for MHD
simulations, see Feng et al. (2006, 2007), Zhang et al. (2006),
and Jiang et al. (2010, 2012).

The initial and boundary conditions are given as usual in the
MHD-relaxation method for NLFFF extrapolation (Roumeliotis
1996; Valori et al. 2007; Jiang et al. 2011). The initial magnetic
field is supplied with the potential field Bpot computed using the
LoS magnetogram. In the magnetic splitting form, it is simply
set by B0 = Bpot and B1 = 0. The system is begun from
a static state (v = 0) and driven by inputting vector-magnetic
information into the bottom boundary. Specifically, at the bottom
boundary, the magnetic field B1 is linearly changed from the
initial value 0 to the final value Bvec − Bpot (Bvec is the vector
magnetogram) in several values of Alfvén time τA. In such a
process, the Lorentz forces are continuously injected from the
bottom to drive the system away from the initial potential field.
After that, the bottom boundary is fixed for the system can reach
a new equilibrium. During the entire evolution, the lateral and
top faces are fixed as B1 = 0 and the velocity of all boundaries
is unchanged as v = 0.

The time step Δt is restricted by the CFL condition as

Δt = 0.5
Δx

vA + vmax
, (12)

where the Alfvén speed vA = 1 and vmax is the maximum
velocity of the entire computational domain. In this context,
an arbitrary choice of the frictional coefficient (ν > 0) can be
workable because the numerical instability is prohibited by the
CFL condition. But choosing a proper ν is particularly important

since it controls the relaxation speed of the system. A simple
half-discretizing of the momentum equation (7) gives

pn+1 − pn

Δt
= J × B − νpn+1, (13)

where n denotes the time level (note that the source terms, e.g.,
the friction, are treated implicitly in the CESE method), and,
thus,

pn+1 = pn + ΔtJ × B
1 + νΔt

. (14)

Equation (14) shows that the effect of the friction is simply to
reduce the momentum at every time step by a factor of 1 + νΔt .
A ν that is too low may lead to a velocity that is too high (�vA),
which may excessively distort the field line. On the other hand,
friction that is too strong will suppress the velocity to a very
low value that makes the system too difficult to be driven. To
compromise, we set ν = 4cΔt/Δx2, which gives the factor

1 + νΔt = 1 +
c

(1 + vmax)2
, (15)

where c ∼ 1 is variable for optimizing the relaxation. In this
form, the friction is adaptively optimized for both the driving and
relaxing processes according to the maximum velocity: in the
driving process, the velocity is relatively large, which reduces
the friction for fast evolution away from the initial field; in
the relaxing process, the velocity becomes smaller, which will
increase the friction for fast relaxation to equilibrium. A similar
setting of ν is also done by van Ballegooijen et al. (2000) and
Valori et al. (2007). Finally, for the diffusive coefficient of ∇ ·B,
we set μ = 0.4Δx2/Δt to maximize the diffusive effect without
introducing numerical instability.

One great challenge of the NLFFF reconstructions is the lim-
itation of computational resources, especially for the extrap-
olation of currently available high-resolution and large-field-
view magnetograms; thus, a parallel computation is generally
required. Our method is parallelized by the AMR-CESE code
(Jiang et al. 2010, 2011), which is a combination of the CESE
code within the PARAMESH toolkit (an open-source Fortran
package for implementing the parallel-AMR technique on ex-
isting code; MacNeice et al. 2000) and is performed on a
share-memory parallel cluster. Also, for a large magnetogram,
a multigrid-like strategy is recommended to accelerate the com-
putation and improve the quality of extrapolation (Metcalf et al.
2008). We serially compute the solution on a number of grids
with a resolution ratio of two and input the results of the coarser
resolution to initialize the next finer resolution. It should be
noted that such a method is not a standard multigrid since it
does not incorporate different grids simultaneously or iterate
back and forth between coarser and finer grids. Instead, it com-
putes the solution of different grids only once and uses the
coarser solution to initialize the finer grid. The main advantage
of doing this is to provide a better (than the potential field) start-
ing equilibrium on the full resolution grid. In particular, standard
node-centered, full-weighting restriction and prolongation op-
erators of the multigrid method are used to transfer data between
different resolutions. Using these operators, any boundary val-
ues are interpolated using data on the same boundary face, and
the total flux of the magnetogram is conserved between differ-
ent grids. It is worth noting that, when using the coarser results
to initialize the finer grid, the magnetic splitting form can have
accuracy because the deviation field B1 is only needed to in-
terpolate, while the intrinsic potential field B0 is always reset
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Figure 1. Vector magnetograms of the central region x, y ∈ [−0.5, +0.5] for CASE LL1 (left) and CASE LL2 (right). The contours represent Bz. The tangential field
is shown by the vectors with blue color in the positive Bz region and red in the negative Bz region.

(A color version of this figure is available in the online journal.)

by the value on the final resolution or Green’s function method.
However, the multigrid algorithm has a shortcoming in that ev-
ery prolongation (by interpolation) will introduce new errors of
divergence and current to B1 that can be “felt” by the CESE
method. Such a problem is also faced in many AMR simula-
tions due to the mesh refinement (Tóth & Roe 2002). We will
discuss its effects in Section 5 by comparing the results with
and without the multigrid algorithm.

3. BENCHMARK MODELS

3.1. Low & Lou’s Force-free Field

The NLFFF model derived by Low & Lou (1990) has
served as a standard benchmark for many extrapolation codes
(Wheatland et al. 2000; Amari et al. 2006; Schrijver et al. 2006;
Valori et al. 2007; He & Wang 2008; Jiang et al. 2011). The
fields of this model are basically axially symmetric and can
be represented by a second-order ordinary differential equation
derived in spherical coordinates:

(1 − cos2 θ )
d2P

d(cos θ )2
+ n(n + 1)P + a2 1 + n

n
P 1+2/n = 0, (16)

where n and a are constants. Then the magnetic field is given by

Br = 1

r2 sin θ

∂A

∂θ
, Bθ = − 1

r sin θ

∂A

∂r
, Bφ = 1

r sin θ
Q,

(17)
where A = P (cos θ )/rn and Q = aA1+1/n. The solution P
of Equation (16) is uniquely determined by two eigenvalues,
n and its number of nodes m (Low & Lou 1990; Amari et al.
2006). By arbitrarily positioning a plane in the space of the
analytical fields, one obtains a different kind of test case in
which the plane represents the bottom boundary condition for
the extrapolation of the overlaying fields. In this way, the fields

sliced by the plane do not show any more symmetry and, thus,
benefit a general testing of extrapolation. The position of the
plane is characterized by two additional parameters, l and Φ.
Here we choose two particular solutions characterized by the
parameters n,m, l, and Φ, which are respectively given by
n = 1, m = 1, l = 0.3, and Φ = π/4 (referred to as
CASE LL1), and n = 3, m = 1, l = 0.3, and Φ = 4π/5
(CASE LL2). For both cases, the computational domain is
x, y ∈ [−1, +1] and z ∈ [0, 2] and is discretized by a uniform
grid of 64×64×64 (same as in Paper I). The same test solutions
are also used in the above references where more analyses of
these fields can be found. The vector magnetograms for both
cases at z = 0 are shown in Figure 1 and their three-dimensional
field lines are shown in panel (a) of Figures 4 and 7. Basically,
nonpotential fields occupy more volume in CASE LL1 than
in CASE LL2, and CASE LL2 is “more nonlinear” with a
larger α and stronger fields more concentrated near the center
of the model volume. Since the solutions show rather smooth
(small gradients) and relatively simple magnetic structures with
their topologies roughly consistent with those of the potential
fields based on the same LoS magnetograms, these tests can be
regarded as preliminary tests for any newly developed NLFFF
extrapolation methods before facing more stringent cases or
realistic magnetograms.

3.2. The van Ballegooijen Reference Model

The van Ballegooijen reference model is adopted from Paper
II for a more stringent and realistic testing of our code. Using
this reference model, it is possible to mimic the analysis of
real observational data while still knowing the properties of
the field to be modeled. This model field is constructed by
initially inserting an S-shaped flux bundle into a potential
field associated with active region AR 10814 (see panel (a)
of Figure 3), and then relaxing the unbalanced system to a
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(a) (b)

Figure 2. van Ballegooijen reference model: magnetic field lines with a contour of Bz on the bottom surface. The field lines shown are traced from footpoints equally
spaced at the bottom surface. (a) The initial potential field and (b) the final near-force-free reference model. The bottom row enlarges the central region outlined by
the small cube in the top row.

(A color version of this figure is available in the online journal.)

near-force-free state using van Ballegooijen’s magnetofrictional
code in spherical geometry (van Ballegooijen et al. 2000; van
Ballegooijen 2004). Furthermore, an upward force was applied
to the field at the lower boundary during the relaxation process to
mimic the effect of magnetic buoyancy in the photosphere, thus
achieving more realistic magnetic fields between photospheric
and chromospheric heights in the model. Finally, through
coordinate transformation and interpolation from the original
spherical geometry, magnetic fields in a Cartesian box of
320 × 320 × 258 pixels centered on the active region are
extracted as the final reference model. The final near-force-
free field is drawn in panel (b) of Figure 3, which contains
several interesting topological features, including a coronal
null and its associated separatrix surface, and the S-shaped
flux bundle surrounded by a quasiseparatrix layer (see more
details in Paper II). Compared with the initial potential field,
the magnetic topology near the bottom is significantly modified
by the low-lying flux rope, which challenges the extrapolation
much more than the Low & Lou cases. Because of the extra
force presented at the bottom, this reference model can be
used for tests of extrapolations from either the “chromospheric”
or the “photospheric” magnetograms by providing the NLFFF

code with data at z = z2 or z = z0 (z is the height in the
model, e.g., z0 is the base of the reference model). For the
“chromospheric” case, the boundary data used are largely force-
free, which is consistent with the extrapolation method, while
the “photospheric” case is more forced and thus represents a
more realistic magnetogram of observation. It should be stressed
that the van Ballegooijen reference model is not strictly force-
free for the entire model box, even above the chromosphere, due
to the implementation of the magnetofrictional method and some
other numerical errors. It is demonstrated that, in the model,
the residual forces of at least 5% of the magnetic-pressure force
are present up to the height of z30, which is consistent with what
is known of forces on the Sun. This makes the model a realistic,
solar-like test case for the extrapolation codes.

As was done in Paper II, we will test our code using both the
chromospheric and the photospheric cases. For the photospheric
case, which is inconsistent with force-free assumption, we
only examine the code with the photospheric magnetogram
preprocessed by the method of Wiegelmann & Neukirch (2006).
The magnetograms of both test cases are plotted in Figure 2 and
show a significant shearing along the polarity inversion line
(PIL).
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Figure 3. Vector magnetograms of the central 2242 pixels for the chromospheric case (left) and the preprocessed photospheric case (right). The contours represent Bz

with a saturation level of ±200 G. The tangential field is shown by the vectors (plotted at every second grid point) with blue color in the positive Bz region and red in
the negative Bz region.

(A color version of this figure is available in the online journal.)

4. METRICS

For a detailed analysis of the extrapolation fields, a suite of
metrics introduced in Schrijver et al. (2006) is computed. These
metrics compare either local characteristics, including vector
magnitudes and directions at each point, or the global energy
content. Respectively, they are the vector correlation Cvec

Cvec ≡
∑

i

Bi · bi

/ (∑
i

|Bi |2
∑

i

|bi |2
)

, (18)

the metric CCS based on the Cauchy–Schwarz inequality

CCS ≡ 1

M

∑
i

Bi · bi

|Bi ||bi | , (19)

and the normalized and mean vector error E′
n, E′

m

En ≡
∑

i

|bi − Bi |
/∑

i

|Bi |; E′
n = 1 − En, (20)

Em ≡ 1

M

∑
i

|Bi − bi |
|Bi | ; E′

m = 1 − Em, (21)

where Bi and bi denote the input field (the Low & Lou’s solution
or the van Ballegooijen reference model in this paper) and the
extrapolated field, respectively, i denotes the indices of the grid
points, and M is the total number of grid points involved. As
can be seen, an exact extrapolation will contain all the metrics
equal to unity in such definitions, and the closer to unity means
the better extrapolation and vice versa. Detailed descriptions
for these metrics can be found in Amari et al. (2006), Schrijver

et al. (2006), and Valori et al. (2007). Another very important
parameter for comparing the extrapolation is the free energy of
the magnetic field. It is measured by the ratio of extrapolated
energy to potential energy using the same magnetogram:

E/Epot =
∑

i |Bi |2∑
i |(Bpot)i |2 . (22)

It is common to measure the force-freeness and divergence-
freeness of the extrapolation using the current-weighted sine
metric CWsin and the divergence metric 〈|fi |〉 (Metcalf et al.
2008; Schrijver et al. 2008; DeRosa et al. 2009; Canou & Amari
2010), which are defined by Wheatland et al. (2000) as

CWsin ≡
∑

i |Ji |σi∑
i |Ji | ; σi = |Ji × Bi |

|Ji ||Bi | (23)

and

〈|fi |〉 = 1

M

∑
i

(∇ · B)i
6|Bi |/Δx

, (24)

where Δx is the grid spacing. Both of the metrics are normalized,
with the former focused on the directional deviation between the
currents and the field lines and the latter on the relative value of
residual divergence. These two metrics are equal to zero for an
exact force-free field; hence, the smaller the metrics, the better
the extrapolation.

In addition to the above metrics, we also introduce another
pair of metrics to evaluate the degree of convergence toward the
divergence-free and force-free state. For the first one, we note
that a nonzero ∇ · B (i.e., the magnetic monopole) introduces
an unphysical force to the system, F = B∇ · B, parallel to the
field line (Dellar 2001). To evaluate the effect of this unphysical
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(a) (b)

Figure 4. CASE LL1: magnetic field lines with contour of Bz on the bottom surface. (a) The Low & Lou’s solution and (b) the extrapolation result. The bottom row
enlarges the central region (x, y ∈ [−0.5, +0.5] and z ∈ [0, 1]) outlined by the small cube in the top row.

(A color version of this figure is available in the online journal.)

force on the numerical computation, the metric E∇·B is defined
as the average ratio of this force to the magnetic-pressure force:

E∇·B = 1

M

∑
i

|Bi(∇ · B)i |
|∇(|B|2/2)i | . (25)

Similarly, the second metric E∇×B measures the effect of the
residual Lorentz force in the same way:

E∇×B = 1

M

∑
i

|Ji × Bi |
|∇(|B|2/2)i | . (26)

Unlike the metrics of CWsin and 〈|fi |〉, which mainly charac-
terize the geometric properties of the field, these two metrics
directly measure the physical action of the residual divergence
and Lorentz force on the system in the actual numerical com-
putation. This is important when checking the NLFFF solution
if it is used to initiate any MHD simulations.

For the all metrics above, the first four are more rigid since
they are involved without any type of derivatives, but the
other metrics may be unreliable for comparison with results
from different papers due to the specific numerical realization
of the derivatives (for example, different orders of numerical

differentiation or different configurations of computational grid,
e.g., cell-centered or staggered). In the present work, the second-
order central difference is used for evaluating all the derivatives
associated with the divergence, curl, and gradient operators,
although the spatial derivatives can be directly obtained from
the CESE method.

5. RESULTS

In this section, we present the results of the extrapolation for
the benchmark models. The results are also compared with some
results reported in Papers I, II, and Valori et al. (2007).

5.1. Low & Lou’s Force-free Field

5.1.1. CASE LL1

Results for CASE LL1 are given in Figures 4 and 5 and
Tables 1 and 2. In Figure 4, we show the same selected field lines
in a three-dimensional view for the extrapolation results and
the reference solution, which are traced from footpoints evenly
rooted at the lower boundary. In the central region of core fields
(i.e., x, y ∈ [−0.5, +0.5] and z ∈ [0, 1], enlarged in the bottom
row of the figures), the MHD result is in very good agreement

8
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(a) (b)

Figure 5. CASE LL1: same as Figure 4, but projected onto the x–y planes.

(A color version of this figure is available in the online journal.)

Table 1
CASE LL1: Metrics for the Central and Entire Regions

Model Cvec CCS E′
n E′

m E/Epot CWsin 〈|fi |〉
For the central region
Low 1.000 1.000 1.000 1.000 1.242 0.014 0.94 × 10−4

Our result 1.000 0.997 0.964 0.912 1.241 0.015 1.67 × 10−4

Wiegelmann∗ 1.00 1.00 0.97 0.96 1.26
Valori∗∗ 0.999 0.99 0.95 0.87 1.23 0.009
Potential 0.858 0.869 0.498 0.443 1.000

For the entire domain
Low 1.000 1.000 1.000 1.000 1.294 0.014 0.56 × 10−4

Our result 0.998 0.955 0.873 0.662 1.282 0.060 1.31 × 10−4

Wiegelmann∗ 1.00 1.00 0.98 0.98 1.31 0.070
Valori∗∗ 0.994 0.86 0.80 0.51 1.28 0.019
Potential 0.852 0.824 0.446 0.353 1.000

Notes. The superscript “∗” denotes the reported results in Tables I and II of
Paper I, and “∗∗” denotes the reported results by Valori et al. (2007).

with Low & Lou’s solution, as can be seen from the similarity
of most of the field lines. Such agreement is quantitatively
demonstrated by the metrics in Table 1. The first three metrics
are very close to 1 with an error of <5% and even the most
sensitive metric, E′

m, has an error below 10%. In Table 1, we
also compare the metrics with the best result by Wiegelmann’s
code (Wiegelmann 2004) reported in Paper I and extrapolation
by Valori et al. (2007). Our result for the central region, although

Table 2
CASE LL1: Metrics of E∇×B and E∇·B

Model E∇×B E∇·B
For the central region
Low 0.007 0.005
Our result 0.010 0.008

For the entire region
Low 0.003 0.002
Our result 0.024 0.005

only specifying the lower boundary, still reaches the level of the
best extrapolation using information from Low & Lou’s solution
on all six boundaries. This may be because this test case is close
to the potential field, and hence a fixed side and top boundary
conditions can rarely impact the central extrapolation. The
influence of the boundary conditions is more explicitly shown
through a comparison of the metrics for the entire domain.
The Wiegelmann’s extrapolation still performs perfectly with
all four metrics extremely close to unity, while our result and
that of Valori et al. perform less exactly, but the results are still
satisfactory. Like other results in Table 1, our extrapolation also
recovered the energy content very precisely, especially for the
central region; furthermore, the metrics evaluating the force-
freeness and divergence-freeness are rather small and close to
the reference values, which is caused by discretization error. All
these results show that extrapolation of a very high accuracy, at

9
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Figure 6. CASE LL1: the history of the relaxation to force-free equilibrium. (a) Evolution of residual res(B) with time (or the iteration steps); (b) evolution of the
maximum and average velocity; and (c) and (d) evolution of the metrics for the central region (marked by (c)) and the entire volume (marked by (e)).

(A color version of this figure is available in the online journal.)

least for this relatively easy test case, can be achieved using our
implementation.

In the Valori’s implementation of the magnetofrictional
method (Valori et al. 2007), a fourth-order numerical scheme
is used with many layers of ghost mesh and a high-order poly-
nomial extrapolation of the fields is adopted on the side and top
boundaries. However, by comparing our result with Valori’s,
it is interesting to note that our implementation performs bet-
ter, although our numerical scheme is a second-order method
without any ghost layers and the boundaries are simply fixed.

In this test, the boundary effect can be neglected as mentioned
(while in the following test of CASE LL2, we will see the
effect of different treatments of these boundaries). Then, we
concluded that the better performance is due to the merit of
using a better solver, i.e., the CESE method combined with
the magnetic splitting algorithm, which can gain additional
accuracy.

We finally provide a study of the convergence of the extrap-
olation. In Figure 6, we show the history of the system relaxing
to the final force-free equilibrium, including the residual of
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Table 3
CASE LL2: Metrics for the Central and Entire Regions

Model Cvec CCS E′
n E′

m E/Epot CWsin 〈|fi |〉
For the central region
Low 1.000 1.000 1.000 1.000 1.099 0.036 3.14 × 10−4

Our result 0.999 0.933 0.938 0.636 1.114 0.047 7.35 × 10−4

Wiegelmann∗ 1.00 0.91 0.92 0.66 1.14
Valori∗∗ 0.999 0.95 0.96 0.75 1.11 0.015
Potential 0.923 0.661 0.572 0.299 1.000

For the entire domain
Low 1.000 1.000 1.000 1.000 1.100 0.035 2.17 × 10−4

Our result 0.999 0.574 0.852 −1.060 1.115 0.060 6.35 × 10−4

Wiegelmann∗ 1.00 0.57 0.86 −0.25 1.14
Valori∗∗ 0.999 0.64 0.88 −0.01 1.11 0.027
Potential 0.921 0.346 0.465 −0.639 1.000

Notes. The superscript “∗” denotes the reported results in Tables I and II of
Paper I, and “∗∗” denotes the reported results by Valori et al. (2007).

temporal evolution of the magnetic field

resn(B) =
√√√√1

3

∑
δ=x,y,z

∑
i

(
Bn

iδ − Bn−1
iδ

)2

∑
i

(
Bn

iδ

)2 (27)

(where n denotes the iteration steps), the evolution of the
velocity, and the metrics. The system converged very fast from
an initial residual of 10−2 to value below 10−7 with time of
100τA (about 5000 iteration steps, see panel (a) of Figure 6).
The evolution of the plasma velocity indicates that a static
equilibrium is reached as expected with a rather small residual
velocity ∼0.01, which is only on the order of the numerical
error O(Δx2) of the CESE solver. All the metrics plotted in
the figure converged after 40τA (about 2000 iteration steps),
when the residual is on the order of 10−5. Note that the
metric fi of ∇ · B, like the plasma velocity, first climbs to a
relatively high level (∼0.01, see panel (d) of Figure 6) and
then drops to the level of discretization errors. In principle, the
divergence-free constraint of B should be fulfilled throughout
the evolution, at least close to the level of discretization error.
However, an ideally dissipationless induction equation (6)
with a divergence-free constraint can preserve the magnetic
connectivity, which makes the topology of the magnetic field
unchangeable (Wiegelmann 2008) unless a finite resistivity is
included to allow the reconnection and changing of the magnetic
topology (Roumeliotis 1996). In the present implementation in
which no resistivity is included in the induction equation, a
break of the ∇ · B constraint in the initial evolution process
(indicated by the climb of metric fi) can thus produce a change
in the magnetic topology (also note that a numerical diffusion
can help also topology adjustment).

5.1.2. CASE LL2

Now we present the result of the second test, CASE LL2,
which is more difficult than the first one. The results are shown
in Figures 7 and 8 and Tables 3 and 4. Compared with CASE
LL1, this case has more nonpotential and is more nonlinear
with a relatively larger gradient of fields. Even after considering
this, our extrapolation still provides a satisfactory result that is
as good as the best result in Paper I (see the first four metrics
shown and compared in Table 3). It is also quite encouraging
that our result for the central region is close to Valori’s, which
is computed with a fourth-order numerical scheme. Figures 7

Table 4
CASE LL2: Metrics of E∇×B and E∇·B

Model E∇×B E∇·B
For the central region
Low 0.011 0.008
Our result 0.026 0.024

For the entire region
Low 0.004 0.003
Our result 0.025 0.013

and 8 demonstrate qualitatively the consistence with the Low &
Lou’s reference solution. The energy contents are reproduced
very well for both the central region and the entire domain.

By comparing the metrics of the entire domain, we find that
our result scores worse than Valori’s, especially as shown by E′

m.
The reason for this is twofold. First, a high-order scheme can
characterize the large gradient much more accurately than the
second-order scheme; thus, the fourth-order scheme by Valori
et al. (2007) shows its advantages for this test case with larger
gradient than CASE LL1 (the high-order accuracy can also be
achieved by mesh refinement other than improving the order
of the numerical scheme. As demonstrated in our previous
work (Jiang et al. 2011), a refined grid of 128 × 128 × 100
with the CESE scheme gave a much more accurate result,
with the most sensitive metric even reaching 0.166). Second,
our implementation simply fixed the artificial boundaries (i.e.,
the lateral and top faces), which obviously makes the system
overdetermined. In the present test case, the final field is very
nonpotential, hence the boundary values significantly deviate
from the initial conditions. A fixed boundary condition will tie
the field lines that pass through the boundary, which would
otherwise freely cross the boundary since this boundary is
a nonexisting interface in the realistic corona. This line-tied
condition thus hinders the system from relaxing to a true
force-free state. The metric of CWsin clearly demonstrates that
the field is less force-free than Valori’s result. The boundary
effect can be seen visually from some field lines close to
the lateral boundaries shown in the figures (e.g., see the
distortion of field lines at the lower left coroners of panel
(b) in Figures 7 and 8). Also caused by the boundary effect,
the field for the entire domain (CWsin = 0.060) is thus less
force-free than the central region (CWsin = 0.047). In a full
MHD simulation, this boundary effect can be minimized by
using so-called nonreflecting boundary conditions based on
the characteristic decomposition of the full MHD system (Wu
et al. 2001, 2006; Hayashi 2005; Feng et al. 2010; Jiang et al.
2011). However, for the present form of the magnetofrictional
equation, the characteristic method is no more valid because
of the eigendegeneration of the nonhyperbolic system. In
such situation, a natural choice for modeling the nonreflecting
boundary is to use linear or high-order extrapolation, just as was
done by Valori et al. (2007). Fortunately, field configuration
like this Low & Lou case with the entire volume being very
nonpotential is not usually found in observed magnetograms.
By choosing a model box significantly larger than the core
nonpotential region, a simply fixed boundary value of the initial
potential field is still sufficient for most extrapolations, for
example, test cases in the next section.

Figure 9 shows that the convergence speed is even faster
than CASE LL1. The residual of the magnetic field reaches
the order of 10−7 with only ∼3200 iterations at 60τA. The
evolution speed of the magnetic field is also demonstrated by
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(a) (b)

Figure 7. Same as Figure 4 but for CASE LL2.

(A color version of this figure is available in the online journal.)

the magnitude of the plasma velocity, which is larger than
that of CASE LL1. At about 30τA, all the metrics converged
with the corresponding residual of the magnetic field on the
order of 10−5. This and the preceding cases show that generally
the iteration can be stopped when resn(B) < 10−6, since after
then the temporal change of the magnetic field can actually be
neglected.

5.2. The van Ballegooijen Reference Field

We first perform the extrapolation of the chromospheric case,
which provides a largely force-free magnetogram without any
preprocessing. Figure 10 shows the three-dimensional field
lines of extrapolation and the reference model for a side-
by-side comparison. The field lines shown are traced from
footpoints equally spaced at the bottom surface. We especially
adjusted the figures to an orientation that was approximately
the same as Paper II to visually compare them with the results
from the other codes. The same field lines are also projected
on the x–y plane in Figure 11. As shown from an overview of
the figures, the extrapolation reproduced quite well the basic
magnetic topology, including the low-lying S-shaped field-line
bundle and the overlying magnetic arcade that straddles the
flux rope. For a confirmation of the presence of the flux rope
in the extrapolation, we select a set of field lines of the S-

shaped bundle and plot them using different colors in Figure 12
with different perspectives. Figure 12 clearly shows that the
flux rope is qualitatively recovered, encouraging us that the
code can be used to handle such relatively complex test cases.
The extrapolated flux rope is weakly twisted and its core fields
basically lie along the bottom PIL, showing a high shear with
respect to the overlying arcades.

In Table 5, we give a quantitative evaluation and comparison
of the result with those reported in Paper II. To minimize the
(side and top) boundary effects, the metrics are applied to
the central region of (x, y) ∈ [48, 271] × [48, 271] with two
different heights: z ∈ [2, 61] for focusing on the low-lying
flux rope and z ∈ [2, 225] for also including the surrounding
potential-like field. This is done in the same way as in Paper II
and the results, along with the first three preferable results in
Paper II, are presented. Note that some metrics (e.g., the CCS
and CWsin) for the reference and potential models differ slightly
from those shown in Paper II, which may be due to different
precisions (i.e., single or double precision) used in the numerical
computation.

As shown in Table 5, the extrapolation performs very well
with errors only of ∼2% for the first two metrics. These
metrics, however, are not a sensitive indicator of extrapolation
accuracy (Valori et al. 2007); thus, all the methods in Paper II
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(a) (b)

Figure 8. Same as Figure 5 but for CASE LL2.

(A color version of this figure is available in the online journal.)

Table 5
The van Ballegooijen Reference Model: Metrics for Extrapolation of the

Chromospheric Case

Model Cvec CCS E′
n E′

m E/Epot CWsin 〈|fi |〉
For z ∈ [2, 225]
Reference 1.000 1.000 1.000 1.000 1.343 0.107 1.02 × 10−4

Our result 0.995 0.978 0.885 0.734 1.337 0.133 1.11 × 10−4

Our result∗ 0.993 0.975 0.868 0.712 1.357 0.142 1.32 × 10−4

Wiegelmann∗∗ 1.00 0.99 0.89 0.73 1.34 0.11
Wheatland∗∗ 0.95 0.98 0.79 0.70 1.21 0.15
Valori∗∗ 0.98 0.98 0.84 0.71 1.25 0.15
Potential 0.852 0.952 0.687 0.665 1.000

For z ∈ [2, 61]
Reference 1.000 1.000 1.000 1.000 1.361 0.103 1.33 × 10−4

Our result 0.995 0.989 0.923 0.883 1.348 0.125 1.58 × 10−4

Our result∗ 0.993 0.979 0.902 0.825 1.366 0.129 1.74 × 10−4

Wiegelmann∗∗ 1.00 0.99 0.94 0.89 . . . 0.11
Wheatland∗∗ 0.95 0.95 0.79 0.76 . . . 0.15
Valori∗∗ 0.98 0.96 0.86 0.81 . . . 0.15
Potential 0.847 0.901 0.660 0.678 1.000

Notes. The superscript “*” denotes that the multigrid-type algorithm is used to
speed up the extrapolation, and the superscript “∗∗” denotes the reported results
in Tables 3 and 4 of Paper II.

give these metrics within the same level, even including the
potential field. Using the more sensitive metrics En and Em,
we find that our result for z ∈ [2, 225] is identical with the

best result performed by Wiegelmann. For the lower height, the
deviations of these metrics with the best result are smaller than
<2% (note that these deviations can also be partially introduced
by the different precisions in the numerical computation). This
comparison encourages us further regarding the success of our
implementation. Our result also gives energy metrics very close
to the reference values, showing a good recovering of the free-
energy content, which is particularly important for coronal field
extrapolation. Finally, the CWsin metric behaves a bit worse
than the first five metrics when compared with the Wiegelmann’s
result, but it still scores better than the following results by
Wheatland and Valori.

The last two metrics E∇×B and E∇·B (shown in Table 7), both
of which are nonzero but are in a very low level, mean that
the reference model is very close to force-free and divergence-
free but never exact as expected (see Section 5.2). Again, our
results present values very similar to those in the reference
model. Note that, although both CWsin and E∇×B measure the
degree of force-free, the former depends more strongly on the
high-current regions (Valori et al. 2007) while the latter is not.
Hence, CWsin for both heights gives nearly the same value of
0.1, while E∇×B gives a significantly larger value of 0.06 for the
lower domain (z ∈ [2, 61]) than the value of 0.018 for the full
domain (z ∈ [2, 225]), which shows that the residual forces are
mainly presented in the lower region. Using these two metrics,
we demonstrate that our code can minimize the residual forces
into a very low value and fulfill the divergence-free condition
well.
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Figure 9. Same as Figure 6 but for CASE LL2.

(A color version of this figure is available in the online journal.)

In Table 5, the result with the multigrid-type algorithm is
also presented, which is performed on a three-grid sequence
(80 × 80 × 64, 160 × 160 × 128, and the full resolution
320 × 320 × 256). We found that this result (with a multigrid
algorithm) behaves a little bit worse compared with the result
without a multigrid algorithm. This is due to the additional
numerical errors of ∇ ×B and ∇ ·B introduced by interpolating
the field from a coarser to finer grid, which thus results in a
little bit larger value of CWsin and 〈|fi |〉 than those without
a multigrid algorithm. Without the multigrid algorithm, the
magnetic field splitting form can avoid this numerical errors

by using a zero B1 initially and thus performs better. However,
in spite of this small disadvantage, the multigrid algorithm is
still encouraged to be adopted since its reward is a significant
reduction of the computing time (e.g., for the present test case,
we find that using the multigrid algorithm saves approximately
two-thirds of the CPU time).

Now we present the results for the photospheric case with
a preprocessed magnetogram. The preprocessing procedure
can remove the net forces of the photospheric magnetogram
and hence provide the extrapolation code with a more con-
sistent lower boundary condition than the raw magnetogram.
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(a) (b)

Figure 10. Chromospheric test case of the van Ballegooijen reference model: magnetic field lines with a contour of Bz on the bottom surface. (a) The reference model,
(b) the extrapolation result. The bottom row enlarges the central region outlined by the small cube in the top row.

(A color version of this figure is available in the online journal.)

Table 6
The van Ballegooijen Reference Model: Metrics of E∇×B and E∇·B

Model E∇×B E∇·B
For z ∈ [2, 225]
Reference 0.018 0.004
Our result of the chromospheric case 0.023 0.005
Our result of the photospheric case 0.048 0.015

For z ∈ [2, 61]
Reference 0.060 0.010
Our result of the chromospheric case 0.072 0.014
Our result of the photospheric case 0.132 0.040

In Paper II, both cases with the raw and preprocessed photo-
spheric magnetograms are tested, and it is found that the pre-
processed case gives a significantly better result than the raw
case in which the flux rope is not reproduced at all. This demon-
strated that the preprocessing procedure is necessary for those
extrapolation codes. Besides, the smoothing involved in the pre-
processing also benefits the extrapolation code, which is based
on a numerical finite difference.

Table 7
The van Ballegooijen Reference Model: Metrics for Extrapolation

of the Photospheric Case

Model Cvec CCS E′
n E′

m E/Epot CWsin 〈|fi |〉
For z ∈ [2, 225]
Reference 1.000 1.000 1.000 1.000 1.531 0.107 1.02 × 10−4

Our result 0.970 0.968 0.783 0.679 1.146 0.257 2.29 × 10−4

Wiegelmann∗ 0.98 0.97 0.77 0.65 1.18 0.26
Wheatland∗ 0.88 0.96 0.69 0.65 1.03 0.11
Potential 0.850 0.945 0.659 0.636 1.000

For z ∈ [2, 61]
Reference 1.000 1.000 1.000 1.000 1.559 0.103 1.33 × 10−4

Our result 0.970 0.980 0.800 0.791 1.149 0.230 3.45 × 10−4

Potential 0.845 0.891 0.629 0.646 1.000

Note. The superscript “∗” denotes the reported results in Table 3 of Paper II.

Our result is given in Figure 13 and Table 6. The field
lines show that the overall structure, including the flux rope,
is still recovered qualitatively, but only partially. By careful
comparison with the reference or the chromospheric cases, the
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(a) (b)

Figure 11. Chromospheric test case of the van Ballegooijen reference model: same as Figure 10 but projected onto the x–y planes.

(A color version of this figure is available in the online journal.)

(a) (b)

(c)

Figure 12. van Ballegooijen reference model: different views of the flux rope. (a) Three-dimensional view, (b) projection on the x–y plane, and (c) on the x–z plane
with the white line denoting the bottom. Since the middle of the flux rope lies proximal to the bottom, the z scale in panel (c) is doubled for a better view of the field
lines.

(A color version of this figure is available in the online journal.)
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(a) (b)

Figure 13. Photospheric test case of the van Ballegooijen reference model: magnetic field lines with contour of Bz on the bottom surface. (a) Three-dimensional
(3D)view and (b) x–y plane projection of the extrapolation result. The bottom row enlarges the central region outlined by the small cube in the top row.

(A color version of this figure is available in the online journal.)

difference is also evident, e.g., the bundle of S-shaped lines
is much thinner in the present case, which seems to suggest
that many field lines have not fully reconnected to form an
entire S. The quantitative comparison also demonstrates that the
extrapolation quality is a bit worse than the chromospheric case,
which can especially be seen in the CWsin and E∇×B metrics
(nearly twice those of the chromospheric case). It means that
the extrapolated field is farther away from the exactly force-
free state than the chromospheric case. The free energy is also
substantially underestimated much like the results in Paper II.
This is because the preprocessing does not recover a force-
free magnetogram that is entirely consistent with the reference
model. Still, it is worthwhile noting that our result again reaches
the same level of the best result in Paper II, and some of the
metrics, including the most sensitive one Em, perform even better
than Wiegelmann’s.

6. CONCLUSIONS

As a viable way to study the magnetic field in the corona,
the NLFFF extrapolation also needs considerable effort to

be devoted to its numerical realization. In this paper, a new
numerical implementation of NLFFF extrapolation is presented
based on the MHD-relaxation method and the CESE-MHD
code. Our implementation stands out because of the following
aspects.

1. The magnetofrictional approach that is designed for speed-
ing the relaxation of the MHD system (Roumeliotis 1996;
Valori et al. 2007) is realized for the first time by the high-
performance CESE scheme on a grid without any type of
ghost zone or buffer layer.

2. The accuracy is further improved by first utilizing the
magnetic splitting form (Tanaka 1994) for NLFFF methods
to totally avoid the numerically random errors involved with
the initial input.

3. Multimethod control, i.e., the diffusive and convection
term, of numerical magnetic monopoles is employed for
effectively reducing the divergence error.

4. The vector magnetogram is inputted at the bottom boundary
in the way of time-linearly modifying the potential field to
match the magnetogram, and other artificial boundaries are
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fixed as initial potential values, making our implementation
much easier than other MHD-relaxation methods (e.g.,
those by Roumeliotis 1996 and Valori et al. 2007).

5. The code is highly parallelized with the help of the
PARAMESH toolkit and was performed on the share-
memory parallel computer. It can be readily realized with
the AMR technique and applied to a very high resolution
magnetogram in the near future. The multigrid-type algo-
rithm is also incorporated into the code to speed up the
computation as recommended.

We have examined the capability of the method using several
reference solutions of NLFFF that can serve as a suite of
benchmark tests for any NLFFF extrapolation code. These test
cases consist of the classic half-analytic force-free fields by
Low & Lou (1990) and the much more stringent and solar-like
reference solution by van Ballegooijen (2004). The results show
that our method is successful and versatile for extrapolations of
either the relatively simple cases or the rather complex cases that
need significant rebuilding of the magnetic topology, e.g., the
flux rope. We also compute a suite of metrics to quantitatively
analyze the results and show that the solutions are extrapolated
with high accuracies that are very close to, and even surpass, the
best results by Wiegelmann (2004) after comparing the metrics.
This demonstrated that, at least in computation accuracy, our
code performs as well as the best state-of-the-art one (the
computing time of the code, however, is difficult to compare
because the hardwares are different). In addition, we introduced
a pair of metrics for the assessment of the divergence-freeness
and force-freeness of the extrapolation, E∇·B and E∇×B, which
further demonstrated that our code can fulfill the solenoidal
constraint well and minimize the Lorentz force to the same
level of the reference values.

The success of our implementation encouraged us that, with a
good solver, the MHD-relaxation approach can also extrapolate
the NLFFF as accurately as other good-performance algorithms
such as the weighting optimization method. This confirms again
that the implementation of the method plays the same important
role as the underlying approach. It is especially worthwhile to
point out that, as also noted by Wiegelmann (2008), the MHD-
relaxation approach has a great advantage over other methods:
any available time-dependent MHD code can be adjusted for
NLFFF extrapolations, thus saving major effort that should
be used instead to develop a new code from scratch for a
special method. We are also inspired by Valori et al. (2007),
who show that a higher order scheme can significantly advance
the extrapolation. In our project, an arbitrary high-order CESE
scheme is under development and is expected to be used to
improve our implementation in the future.

Recently, more critical tests of extrapolation codes have been
performed by Schrijver et al. (2008) and DeRosa et al. (2009)
based on vector magnetograms of AR 10930 and 10953 from
the Hinode Solar Optical Telescope and observed coronal loops.
It was found that the Grad–Rubin-style current-field iteration
implemented by Wheatland (2006) surpassed the Wiegelmann’s
(2004) code, which performs best in the benchmark tests, and
basically results from different methods are very inconsistent
with each other. This shows that the idealized tests are unable
to assess the code’s ability to handle various uncertainties or
errors in real magnetograms, and a more critical assessment of
the code using realistic vector magnetograms is also planned in
our future work.

The present extrapolation in Cartesian geometry is often
limited to relatively local areas, e.g., a single active region

without any relationship with others. However, the active regions
cannot be isolated since they generally interact with neighboring
ARs or overlaying large-scale fields. It should also be pointed
out that the fields of view in a Cartesian box are often too small to
properly characterize the entire relevant current system (DeRosa
et al. 2009). To study the connectivity between multiactive
regions and extrapolate in a larger field of view, it is necessary
to take into account the curvature of the Sun’s surface by
extrapolating in spherical geometry partly or even entirely,
i.e., including the global corona (Wiegelmann 2007; Tadesse
et al. 2011, 2012). Moreover, a global NLFFF extrapolation
could also avoid any lateral artificial boundaries, which are
inescapable and cause issues in Cartesian codes. We are now
on the path to develop a global NLFFF code for the new
era of routine observation of the global vector magnetogram
(which will be opened by the Helioseismic and Magnetic Imager
on board SDO). Recently, during a project of constructing
a data-driven MHD model for the global coronal evolution,
we established the CESE method on a so-called Yin–Yang
overlapping grid in spherical geometry (Kageyama & Sato
2004). This implementation, combined with our present NLFFF
code, will make the realization of a global NLFFF extrapolation
viable if provided with the global vector magnetogram. The
Yin–Yang grid is composed of two identical component grids
that are combined in a complementary way to cover an entire
spherical surface with partial overlap of their boundaries. Each
component grid is a low-latitude part of the latitude–longitude
grid without the pole, and hence the grid spacing on the sphere
surface is quasi-uniform. In this way, we can avoid the problem
of grid convergence or grid singularity at both poles, which will
otherwise arise if an entire spherical-coordinate grid is used, as
Wiegelmann (2007) has pointed out. However, up to now, there
is no suitable test case used for the global NLFFF extrapolation
other than the simple axially symmetric Low & Lou cases.
Most recently, Contopoulos et al. (2011) give a variety of global
near-force-free solutions by a force-free electrodynamics code,
solely using the radial magnetogram. Their solutions, however,
are not unique to the same radial magnetogram; instead, they
depend on the initial conditions and on the particular approach
to the steady state.1 Anyway, we believe their solutions can
be used as much more realistic and solar-like tests for global
NLFFF codes than the semianalytic solutions. In our future
work, we will develop and test a new global NLFFF code
using the global force-free solutions from Contopoulos et al.
(2011).

This work is jointly supported by the National Natural Sci-
ence Foundation of China (41031066, 40921063, 40890162,
and 41074122), the 973 project under grant 2012CB825601,
and the Specialized Research Fund for State Key Laboratories.
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the van Ballegooijen reference model. The PARAMESH soft-
ware used in this work was developed at the NASA Goddard
Space Flight Center and Drexel University under NASA’s HPCC
and ESTO/CT Projects and under grant NNG04GP79G from
the NASA/AISR project.

1 They are also improving their code to make use of the vector magnetogram
to uniquely define the solutions (I. Contopoulos & C. Kalapotharakos 2011,
private communication).
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APPENDIX A

THE SPECIFIC FORM OF EQUATION (11)

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 · B1/2 − B2
1x − (B0xB1x + B1xB0x) + B0 · B1

−B1xB1y − (B0xB1y + B1xB0y)
−B1xB1z − (B0xB1z + B1xB0z)

0
vxBy − vyBx

vxBz − vzBx

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−B1yB1x − (B0yB1x + B1yB0x)
B1 · B1/2 − B2

1y − (B0yB1y + B1yB0y) + B0 · B1

−B1yB1z − (B0yB1z + B1yB0z)
vyBx − vxBy

0
vyBz − vzBy

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−B1zB1x − (B0zB1x + B1zB0x)
−B1zB1y − (B0zB1y + B1zB0y)

B1 · B1/2 − B2
1z − (B0zB1z + B1zB0z) + B0 · B1

vzBx − vxBz

vzBy − vyBz

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

(A1)

Fν = (0, 0, 0, μ∇ · B1, 0, 0, 0, 0, 0)T ;
Gν = (0, 0, 0, 0, μ∇ · B1, 0, 0, 0, 0)T ;
Hν = (0, 0, 0, 0, 0, μ∇ · B1, 0, 0, 0)T ; (A2)

and

S = (−νρvx,−νρvy,−νρvz, vx∇·B1, vy∇·B1, vz∇·B1, 0, 0, 0).
(A3)
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