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ABSTRACT

We present a method for predicting the arrival of both a CME flux rope

driver in-situ, as well as the sheath of solar wind plasma accumulated ahead of

the driver. For faster CMEs, the front of this sheath will be a shock. The method

is based upon using measurements to superimpose geometries onto both the CME

ejecta and sheath separately. These measurements are used to constrain a Drag-

Based Model, which is improved by including both a height dependence and

accurate de-projected velocities. We also attempt to constrain the geometry of

the model to determine the error introduced as a function of the deviation of the

CME from the Sun-Earth line. Combining all these factors allows us to create

predictions for both fronts at the L1 point and compare against observations.

We demonstrate an ability to predict the sheath arrival with an average error of

under 4 hours, with an RMS error of about 1.5 hours. For the ejecta the error

is less than two hours with an RMS error within an hour. In addition to testing

the ability to recreate the arrival of the CME structures at L1, we discuss the

physical implications of our model for CME expansion and density evolution.

We show the power of our method when the best data possible is available and

demonstrate the practical implications a permanent L5 observer on space weather

forecasting capabilities, while also discussing the limitations of the method that

will have to be addressed to create a realtime forecasting tool.

1. Introduction

Coronal mass ejections (CMEs) are among the most significant drivers of space weather

at the Earth. Considering the wide array of negative consequences, including damage to
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satellites, power grids and communication interruptions (Schwenn 2006; Pulkkinen 2007),

a full understanding of CMEs is an increasingly important area of research. The potential

damage of a severe space weather caused by a CME interacting with the magnetosphere

of the Earth can be mitigated by accurately predicting when the CME will arrive at the

Earth ahead of time so that some of the affected systems can be protected. Current

predictive efforts include numerical, analytical and empirical models. The current standard

of prediction is on the order of 6-10 hours of average error with a standard deviation on

similar scales (Gopalswamy et al. 2013; Colaninno et al. 2013; Vršnak et al. 2014; Möstl

et al. 2014).

The inputs for all models are based on observations of the corona from white light

coronagraphs aboard different spacecraft. The Solar Heliospheric Observatory (SOHO) was

launched in 1996 and observes from the Lagrangian L1 point, on the Sun-Earth line at a

distance of about 90% of 1 AU from the Sun. SOHO contains the Large Angle Solar Corona

Observatory (LASCO) with two still operational coronagraphs that observe the corona

between 2 and 32 R⊙ (Brueckner et al. 1995).

This was the only white light viewpoint in space until the launch of the Solar Terrestrial

Relations Observatory (STEREO) in 2006. STEREO consisted of two nearly identical

spacecraft traveling in approximate 1 AU orbits in opposite directions relative to the Earth.

Among the instruments onboard the STEREO spacecraft was the Sun Earth Connection

Coronal and Heliospheric Investigation (SECCHI), which combines two coronagraphs

and two heliospheric imagers that allow for continuous white light observations in the

heliosphere from the Sun to beyond 1 AU (Howard et al. 2008).

The advantages of STEREO are the unprecedented distance coverage in the heliosphere

that can be viewed, and the multiple simultaneous viewpoints allowing for a three

dimensional reconstruction of transient objects, rather than just the two dimensional



– 4 –

plane of sky projections offered with just a single view, a significant improvement for

CME tracking (Mishra & Srivastava 2013). These multiple observations have been used

throughout the STEREO era to try and determine the structure of the CME in the

heliosphere and the manner in which CMEs propagate and improve predictive efforts (Wood

& Howard 2009; Lugaz et al. 2009; Rouillard et al. 2009; Tappin & Howard 2009; Möstl

et al. 2009; Liu et al. 2010; Poomvises et al. 2010; Byrne et al. 2013; Colaninno et al. 2013).

As observations have improved, so has the understanding of the complete CME

structure as it propagates. The eruptive material itself, which we will refer to as the ejecta,

is widely considered to be a flux rope in the heliosphere (Zhang et al. 2013). However, it is

known that as the ejecta propagates, it will accumulate ambient solar wind plasma ahead

of the ejecta body. This region of ambient plasma driven by the ejecta is called the sheath

region. If the difference in velocity between the ejecta and the ambient solar wind is faster

than the local Alfvén speed, the boundary of this sheath will become a fast mode shock

wave traveling in front of the flux rope driver.

Sheath evolution is important to understand, as the shocks can also generate Solar

Energetic Particles (SEPs), another growing space weather concern (Gopalswamy et al.

2014). Both the sheath and ejecta can contribute to geomagnetic disturbances, though the

majority of the energy contributing to these storms will come from the ejecta (Zhang et al.

2008), so understanding the independent evolution of both ejecta and sheath is crucial to

space weather forecasting.

Observationally, both the flux rope material and the associated brightenings in the

sheath can be viewed in white light (Vourlidas et al. 2003; Ontiveros & Vourlidas 2009;

Bemporad & Mancuso 2010; Maloney & Gallagher 2011) and for many events it is possible

to use different image processing techniques to allow either the sheath front or the flux rope

portion of the structure to be emphasized (Hess & Zhang 2014). In Figure 1, the different
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features observed using different running and base differencing techniques are shown. Doing

this for a number of events, both the ejecta and sheath front can be tracked and their

evolutions determined, independently of one another. Also, by knowing the location of

each front in the corona the standoff-distance, or the distance between the ejecta and

sheath front along the nose of the CME can be determined. This is important for both

understanding the physics that govern the sheath front generation and evolution and can

be used as a proxy for probing the low corona, as the standoff-distance has been shown to

allow for the calculation of coronal magnetic fields (Kim et al. 2012).

In addition to imaging data, signatures of CMEs can also be observed in in-situ

measurements. These signatures have long been studied at the L1 point from measurements

from spacecraft such as the Advanced Composition Explorer (ACE) (Stone et al. 1998).

The signature of the flux rope is generally thought to be a magnetic cloud, or a structure

defined by strong, rotating magnetic field and low density and temperature (Zurbuchen

& Richardson 2006). The sheath front is given by sharp increases in velocity, density and

magnetic field (Jackson 1986). An example of these in-situ signatures is shown in Figure 2.

The goal of this paper is the demonstration of a method capable of both capturing

the propagation characteristics and dynamics of a CME in the heliosphere accurately

enough to predict an arrival at L1. Additionally, rather than just predicting one part of

the CME structure, we will show that it is possible to predict both the ejecta and sheath

front independently. The rest of this paper will be organized as follows: Section 2 will

detail the events that have been studied as well as describing the techniques for measuring

and modeling ejecta and sheath front height in the heliosphere. We will also discuss the

physics on which the predictive model is built. In section 3 we will analyze the ability of

our model to predict these events as well as comparing the results of our model to others

currently in use. Section 4 will discuss some of the important implications of this work
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as well as the limitations of our model and key steps needed to work towards making our

method applicable for realtime space weather forecasting and section 5 will present the

basic conclusions that we can derive from our method at this time.

2. Data and Methods

2.1. Events

The seven events utilized in this study are CMEs that occurred between April 2010

and March 2013, when the STEREO spacecraft were well positioned to observe CMEs

throughout the heliosphere. The chosen events were well observed upon eruption and

also had in-situ signatures visible at ACE. The in-situ arrivals were divided into the

flux-rope and compression/shock front arrival. Some of the events at ACE, especially

those propagating further from the Sun-Earth line, do not meet the classic magnetic cloud

signature of a flux rope. In the past there was debate as to whether this was an indication

of a non-flux rope CME, but we now believe that this is just the flux rope flank passing

through the observer (Vourlidas et al. 2013; Zhang et al. 2013). This means that while

the sheath front is usually unambiguous in its arrival, the flux rope arrival time is more

subjective, especially for the more complex events.

Basic information of each event is summarized in Table 1. These 7 events include

a wide range of CMEs in terms of propagation direction, speed and in-situ signatures,

allowing us to limit the effect of selection bias tuning the model towards specific types of

events. These include CMEs with initial speeds ranging from 400 to 1500 km/s, upstream

solar wind speeds between 289 and 513 km/s and deviations of the CME propagation

direction as high as 28◦ in longitude and 26◦ in latitude from the Sun-Earth line. Our

sample also includes both filament eruptions without flare associations and CMEs coming
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from active regions correlating to flares of differing magnitudes. All of the measurements in

the sample begin between 4 and 8 R⊙, corresponding to the first appearance of the CME in

the COR2 FOV, while the final measurements are as close as 28.1 R⊙ and as deep into the

heliosphere as 76.6 R⊙. The general trend of the distance from the Sun for the final usable

measurement is that the faster CMEs tend to be stronger and therefore are observable

further from the Sun.

2.2. Drag Model

As discussed in Hess & Zhang (2014), the true heights of both the ejecta and sheath

front can be obtained through the use of a forward modeling technique that superimposes

geometries onto images from different spacecraft taken at approximately the same time.

For the ejecta, a Graduated Cylindrical Shell (GCS) Model is used (Thernisien et al. 2006,

2009) and for the sheath front, we use a prolate spheroid bubble (Kwon et al. 2014). Using

these geometries for a number of time steps for each event, we get a series of height-time

measurements for each individual CME. The parameters of the GCS model are: the

propagation longitude and latitude, the angular separation of the legs, the aspect ratio

which defines the thickness, the tilt of the ejecta relative the line of latitude and the height

of the ejecta. The spheroid shock is defined by the same propagation direction, and tilt.

On the other hand, the major and minor axis size and the nose height of this spheroid

are distinct from the GCS parameters. Both geometries are shown with real event data in

Figure 1.

Using the aerodynamic-drag based model (Vršnak et al. 2013; Hess & Zhang 2014), the

measurements can be fit and average propagation characteristics can be determined. The

drag model is based on a quadratic acceleration, with full equations of motion
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a(t) = −Γ(v(t)− vsw)|v(t)− vsw| (1)

v(t) =
v0 − vsw

1 + Γ(v0 − vsw)t
+ vsw (2)

R(t) =
1

Γ
ln[1 + Γ(v0 − vsw)t] + vswt+R0 (3)

where v0 is the initial CME speed, vsw is the upstream solar wind speed, R0 is the initial

CME height and Γ is the drag parameter that controls the rate at which the CME reaches

the solar wind speed.

The model is therefore a function of four parameters. The initial height is easily

obtained from the measurements and, as long as the measurements are accurate, the initial

speed can also be determined reliably. The solar wind speed, which would have to be

predicted in an operational mode, can be measured in-situ for the purposes of developing

the predictive model. This leaves the Γ term as the only true unknown.

We can fit all the data points to one static set of parameters, determining an average

Γ throughout the heliosphere. However, it is known that Γ is not one constant value as the

CME propagates, instead the CME undergoes more drag closer to the sun and Γ decreases

as the distances from the Sun increases.

The height-dependent Γ is (Vršnak et al. 2013)

Γ =
cdAρsw
M +Mv

(4)

where A is the cross-sectional area and M is the mass of the CME, ρsw is the ambient solar

density and Mv is the virtual mass, approximated as ρswV/2 where V is the CME volume

(Cargill 2004). By taking CME mass to be given by ρV and V to be approximated as rA

where r is the CME minor radius, the drag parameter can now be approximated as
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Γ =
cd

r( ρ
ρsw

+ 1/2)
(5)

To determine the CME density, as it propagates, we assume it evolves as ρ = ρ0r
3
0/r

3,

where r is the CME minor radius. (Vršnak et al. 2014) assumes the exponent in the CME

density evolution is a two rather than a three. We believe two is too low and that the CME

must undergo a more significant drop in density than the solar wind, which is known to

follow an inverse square law and can be approximated as ρsw = ρsw0R
2
0/R

2. This would be

consistent with observations, which indicate a CME of higher density than the ambient in

coronagraphs but lower than the ambient in-situ.

The more significant drop in density also follows from a physical argument. If the

CME underwent no internal expansion and was simply pulled out by the solar wind, the

CME plasma would be frozen in to the solar wind plasma in a radial direction and the

CME would undergo the same 1/r2 evolution in density as the solar wind. However, the

CME, because of its internal magnetic field, undergoes significant expansion. The GCS

model assumes that this expansion is self-similar and constant. If this were the internal

radial expansion of the flux rope, which can be thought of as a cylinder, were to maintain

this self-similarity the thickness of the flux rope would have to expand at the same rate

as the lateral expansion of the flux rope in solar wind and the CME density would evolve

on the order of 1/r3. This may be true in the inner heliosphere, but as the CME travels

further from the Sun this internal expansion, rather than continuing to be on the same

order as the solar wind expansion will decrease as the internal magnetic pressure weakens,

and is probably closer to 20-40% of the lateral expansion. This would lead to something

approximating the 1/r2.32 shown in Liu et al. (2005). For this work we will use 1/r3, but it

is possible that the model would be improved from a physical standpoint by assuming less

internal CME expansion.
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Assuming ρ = ρ0r
3
0/r

3 and ρsw = ρsw0R
2
0/R

2, and relating the CME minor radius to

the height with the aspect ratio, the two density equations can be combined and the density

ratio can now be expressed as

ρ

ρsw
=

ρ0κR0

ρsw0R
(6)

which then leaves

Γ =
cd

ρ0κR0

ρsw0
+ κR

2

(7)

cd is an unknown, but can reasonably be used to be a number between 1 and 1.5 (Poomvises

2010; Subramanian et al. 2012) and we use 1.35. κ is, for every event a number known

parameter of the model and is around .4. This leaves the initial density ratio as the only

term in the drag model that cannot be observed or easily approximated, and even this ratio

may able to to be obtained from white light images.

In this work, to determine Γ, a series of fittings of the measurements are carried out

to approximate Γ at each point. This provides a series of values of Γ throughout the

heliosphere that can be fit with Equation 7 with just the density ratio unknown. Once the

drag parameter profile is determined, we can use Equation 6 to approximate the evolution

of the CME density relative to the ambient, with an admittedly large error.

Once Γ is known throughout the heliosphere, it can be used to create a more accurate

representation of the drag model. In works using the drag model with a constant Γ, it is

essentially a two point model between the initial CME height and the L1 point. In our

method, we instead use the drag model iteratively. At time t=1, we calculate R and v as

functions of (Γ(R0), v0, vsw, R0). At t=2, R and v are now functions of (Γ(R(1)), v(1), vsw,

R(1)) and so on until the CME reaches L1, to calculate the complete propagation of the
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CME.

2.3. Propagation Direction Geometric Correction

One correction that should be considered is the difference between the GCS height

measurements along the CME nose and the in-situ data points, which are on the Sun-Earth

line. If the CME nose is near the Sun-Earth line, this difference may be negligible, but the

further a CME is propagating from the Earth, a more noticeable difference can be noticed.

To test this, we can apply the geometry of the GCS model.

However, this will not be a perfect comparison, as the GCS model is an idealized

geometry assuming a constant self-similar expansion. This is a simplification of a complex,

highly variable process. There are a number of factors that will distort the CME structure,

including the frozen in effect of the CME and the solar wind (Riley & Crooker 2004),

different part of the CME encountering different ambient environments, and possible errors

in the GCS geometry itself. These potential errors must be considered, and comparing the

arrival of the CME with its propagation direction and the curvature of the GCS geometry

to see if the model geometry can accurately reproduce the propagation in the Sun-Earth

line.

The GCS model is defined by two conic legs, of height, h, connected by a central axis,

varying with the angular distance from the leg (β). At each β angle, there is a circular

cross-section that also varies in size. At the leg, this circle is defined by the base of the

cone and gets progressively wider as the cross section approaches the CME nose (β = 90◦)

the radius of this cross section gets larger (Thernisien et al. 2009). Considering for now

just the z=0 plane of the flux rope central axis, the difference in the distance from the

origin point of the legs (the center of the Sun) to the nose and to another point, P, on the
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outermost edge of the shell can be determined based on the free parameters of the model

by determining the central axis location and cross-section size at each β.

Following the geometric formulas in Thernisien (2011), this distance from the center

to P can be determined by four parameters, the CME height, the aspect ratio (κ), the

half-angular width (α) and the angular difference between CME nose and the point in

question (θ). κ is a key parameter for the construction of the front, as it is the relation

between width of the CME and the length of the leg height, and provides a consistent,

self-similar ratio between CME size and distance from the origin at each β.

To get the distance of P from the center of the Sun, we can form a triangle of the

central point of the GCS geometry, the distance of that point to the edge of the shell and

the distance to that same shell point from the center of the Sun. The central point, denoted

B, is given by triangle with the CME nose-axis and conic height, where the latter is the

hypotenuse and the angle between them is the width of the model. B then, is given by

B = h/cosα. The third side of this triangle, the distance from the center of the conic base

to the central point on the nose axis is ρ.

The distance from B to P is given by a combination of the distance to the central axis

point and the radius at each β. Again from Thernisien (2011), the central axis distance,

denoted X0 is given by known parameters as X0 = ρ+Bκ2sinβ
1−κ2 . The radius of the cross

section centered at X0 is given by R2 = X2
0 +

B2κ2−ρ2

1−κ2 . It should be noted that we are using

R in order to keep the same labels used in (Thernisien 2011), but this R is distinct from

the previous section. For a more detailed derivation of all these terms, refer to (Thernisien

et al. 2006, 2009; Thernisien 2011), but essentially the different quantities come from the

self-similarity relation of the aspect ratio and a coordinate transform along β.

With all of these parameters, we have the full triangle shown in Figure 3 defined by

sides, B, X0 + R, P with angles β + π/2 and θ where P is the distance from the origin to
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the point on the outer shell θ from the y-axis. P is the unknown, but with the known sides

and angles, the law of cosines can be used to calculate P.

P = b2 + (X0 +R)2 − 2b(X0 +R)cos(π/2 + β) (8)

where the proper β is determined by calculating the entire outer shell of the front and

determining which point interacts with the known θ.

As predictions were first attempted, it was obvious from linking the remote sensing

measurements to the actual in-situ arrivals that this curvature was being greatly over-

estimated for CMEs where θ was more than 10◦, causing predicted arrivals as much as 25%

after the observed arrival. However, ignoring the geometric correction entirely showed a

lesser, but still consistent under-estimation of these events by about 10%. Therefore, we

use a weighted average of the GCS corrected height and the uncorrected height, based on

these relative errors. The height of the CME where the height is measured at the nose, hN ,

combined with the height along θ, hG can be combined

hf = .645hN + .355hG (9)

to give the final geometric correction used, hf .

As the propagation direction of the CME as well as the other necessary parameters are

calculated in the fitting, the difference in height between the nose edge and the edge in the

Sun-Earth line. To use this correction, the measurements taken with the GCS model are

considered to be along the CME nose, and are therefore left uncorrected. The geometric

correction is applied to the in-situ arrival point. For example, according to this formula

when a hypothetical CME with a width of 30◦, and an aspect ratio of 0.4 propagating

20− 30◦ from the Sun-Earth line reaches the L1 point, the CME nose will be about 5-10%
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further into the heliosphere. The correction factor for this same CME for 0◦ ≤ θ ≤ 35◦ is

plotted in Figure 4.

This correction seems relatively minor for CMEs propagating within 35◦ of the

Sun-Earth line, which will cover the large majority of CMEs that go on to impact the

Earth (Zhang et al. 2007). Still, for a CME with an average speed of 500 km/s, an extra

15R⊙ ( 7.5% of the distance from the Sun to L1) from the distance correction will cause a

difference of about 6 hours. As we have stated, the standard error of prediction is currently

on the order of 6 hours, so ignoring this term will make it impossible to improve upon the

current state of prediction.

2.4. Treating the Sheath Front

The propagation model and geometry in the previous sections were based solely on

the flux rope. Since the sheath front precedes the arrival of the ejecta, it is arguably more

important to predict the sheath front arrival, though most of the geomagnetic activity will

be caused by the ejecta.

Attempting the same methodology with the sheath front as the ejecta consistently

failed to properly fit the Γ observations of the sheath front, which lead to the sheath front

arrivals being predicted well behind the observed arrivals. This is likely due to the sheath

undergoing a different evolution than the flux rope. The drag model does not properly

address the evolution of sheath front, which is often a non-linear shock wave.

To predict the arrival of the sheath front, a new model was used that combined both

the ejecta measurements and fittings and the sheath front measurements. The basis for this

model is that during the propagation, the sheath front will be a combination of two factors,

the flux rope driver that pushes the sheath as well the independent motion of the sheath
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front itself.

It has been observed before (Corona-Romero et al. 2013; Hess & Zhang 2014) that there

is an independent element to the propagation of the sheath front that provides additional

momentum. To determine this term, the standoff-distance between the ejecta and sheath

front noses was calculated at each point for which each front was measured. For nearly all

the events, a linear trend in the standoff-distance was observed. An example of one of these

events is shown in Figure 5. A linear fit was performed on these measurements which could

be extrapolated from the Sun to the Earth.

Using this standoff-distance evolution as well as the propagation profiles determined

for the ejecta, it is now possible to combine the two into a model for the sheath front

RCF (t) = RFR(t) + At+B (10)

VCF (t) = VFR(t) + A (11)

where A and B are the terms of the linear standoff-distance fitting. It is very likely

that the standoff-distance does not actually increase linearly and the independent motion

of the sheath front would be expected to, at some point, cease continuously increasing at

the same rate. Therefore this model can likely be improved and refined, but it does work

for an initial approximation.

Another factor in the handling of the sheath front is the geometric correction factor

The geometry of the sheath front is not the same as that of the flux rope, and trying to use

the same correction may introduce more error into the process. However, the curvature of

the sheath and the ejecta should be similar enough that using the same geometric correction

is still an improvement over ignoring geometric effects altogether, though refinement is

possible. For this study, the correction is applied to the sheath based on the θ deviation the
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same as it was for the ejecta.

3. Results

3.1. Predictions

With our method, both fronts were fit for each of the seven events. An example of the

measurements with modeled height profiles, velocities and the derived Γ profile for the July

2012 CME are plotted in Figures 6, 7, 8. As is typical for the events, the Γ fitting deviates

noticeably from the measurements. For many events these individual Γ values scatter quite

a bit, so the purpose of this fitting is not an attempt to capture the physical evolution for

the model, but rather trying to constrain the value of Γ for each individual event, and these

fittings can reach this purpose.

Figures 9 and 11 show the predicted arrival for each event plotted against the actual

arrival time. Furthermore, we want to test not just that the arrival time can be predicted,

but also that the method is accurately capturing the physics governing ejecta evolution

profile. Figures 10 and 12 show the velocities of the model when the respective front is at

L1 and the observed in-situ velocities. The in-situ velocity used is the average velocity over

the entire sheath region for the sheath front, and likewise, ejecta velocity is also the average

over the duration of the flux rope passing through ACE. For the ejecta there is more

uncertainty in the velocity, as the sheath velocities are often fairly constant, but because of

the expansion of the ejecta the average velocity of the in-situ signature corresponds to the

bulk motion ejecta velocity and ignores the expansion component.

The prediction numbers are shown in Table 2. The ejecta has an average error of

1.46 hours, with an RMS error of 0.76 hours. As can be seen in Figures 9 and 11, there

is more error in the sheath front predictions. For the sheath front, the average error is
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3.47 hours with an RMS of 1.52 hours. The most significant deviation in the sheath front

numbers come from the slower events being predicted to arrive a few hours too early. This

is likely due to the linear standoff-distance fitting. Comparison between standoff-distance

measurements and in-situ sheath sizes indicate that while the increase is roughly linear

closer to the Sun the increase tapers off before the sheath hits the Earth (Hess & Zhang

2014). For faster CMEs that spend less time in the heliosphere before reaching the Earth,

this effect is minimal enough that a linear fitting is good enough to approximate the arrival.

The results of the slower events indicate that the model for the sheath front could still be

improved with some sort of damping term, perhaps also based on aerodynamic drag, for

diminishing the rate of sheath growth.

3.2. Sensitivity of the Predictions

The results provided by feeding the GCS and shock measurements into a distance

dependent model for Γ and then creating an iteratively calculated drag model were able to

successfully model the arrival of both fronts for a number of events. The next test was the

sensitivity of the model predictions to the input data. Specifically, we wish to determine if

we can avoid the measurement phase and determine Γ empirically or, if the measurements

are needed, what the smallest subset of the data necessary to get accurate predictions

would be.

The first step, to determine the necessity of the measurements, requires looking at the

degree to which the fitted model parameters vary. In general, if we see a slight variation,

or a pattern to the variation in model inputs it would be possible to predict the input

parameter and thus the Γ value. As shown in Equation 7, the only input for the ejecta is

the density ratio of the ejecta to the ambient at the initial height of the model. The initial

height of each event is different, but they should be close enough that a comparison can be
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made.

The range of ρratio(R0) values vary from 3.24 to 32.17 with 6 of the 7 events in between

3.24 and 18.61, as seen in Table 2. The values are scattered seemingly at random with no

noticeable pattern that could be used for predictive purposes.

We also want to test the sensitivity of the model to this parameter. To this end, we

create a series of hypothetical CMEs with initial speed of 1000 km/s and encountering

an ambient solar wind with a speed of 350 km/s. The difference between all the different

runs is a varied initial density ratio, over the range of observed initial density values. We

can then study the effect the derived initial density ratio has on arrival time, plotted in

Figure 13. The change in arrival time is begins to diminish as ρratio(R0) approaches the

highest value in our sample, but between 3 and 18, the difference in arrival time is 16 hours.

Obviously this is a crucial effect on the arrival time, and the initial density ratio and by

extension Γ must be constrained to improve prediction.

To achieve an accuracy within 5 hours, and using the median ρratio(R0) value of the

event set, 10.31, the density ratio needs be accurate to be within a range of approximately

6-15, or about 50%. While predictions would likely be capable without any of the

measurements, in order to achieve consistent results Γ must be constrained.

To determine ρratio(R0) accurately enough to reach this level of prediction, the number

of data points differs from event to event. For most of the events, there a great deal of

scatter in the Γ measurements in the low corona to indicate that at least 5 or 6 observations

must be taken to see a trend emerge and possibly be able to fit through the noise, indicating

that a number of measurements be made to create a usable prediction. However, the main

advantage to this type of model is the ease and speed with which it can be calculated,

meaning predictions could be made almost immediately and then refined and improved

as the CME continues to propagate and more measurements are possible, with every
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observation improving the accuracy.

For the sheath front, at least as much data is necessary. While the ejecta is fit with

only one free parameter, the fact that there are three unknowns for the sheath front leaves

more uncertainty in the fittings and therefore stable fittings will require, based on current

data a minimum of 6 measurements, with the results being consistently improved as more

data is fed into the model.

For a forecasting service, it is also desirable to provide the maximum amount lead

time possible, so the ability to create a prediction as the CME is closer to the Sun is of

the most value. All of these predictions are based on data where the CME is within 80R⊙,

and for many events the fronts become so faint beyond 50R⊙ that measurements beyond

these heights are not taken into account. Slower events tend to stabilize closer to the Sun,

as there be more distinct observational points that can be fit. Faster events need to be

measured further out into the Heliosphere, just to get a suitable number of measurements.

For all events presented here, we would have a lead time of at least 36 hours based upon

the last SECCHI image used for each event.

4. Discussion

4.1. CME Density in the Heliosphere

Apart from the predictive capabilities of this model, there are more basic scientific

implications to CME research that can be derived, the most fundamental of these is the

evolution of CME density as it propagates. As shown in Equation 7, the one free parameter

of the ejecta fittings will scale to the ratio of the density of the ejecta to the ambient solar

wind.

To verify that the scientific assumptions of the model are valid and providing
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meaningful results, we can derive the density ratio in the heliosphere from Equation 6 and

compare these profiles with theoretical models of CME density. The profiles of the 7 events

are shown in Figure 14.

As was explained in the Methods section, the assumptions that lead to these density

ratios having a dependence of approximately 1/r is probably an overestimation, especially

deeper in the heliosphere and the correct value is probably between 0 and 1, and possibly

varies with distance.

The in-situ density ratios from the model are seen in Table 1, with the possible

exception of the extremely low value of the September 2011 event, are all between .15 and

.9, reasonable values given the average solar wind in-situ density of approximately 6cm−3

(Lepping et al. 2015) and the measured ejecta densities in-situ, which were all less than

4cm−3. Still, the majority of the events show density ratios under .5 at L1, which is lower

than was expected. This despite the initial density ratios being largely higher than we

expected. This is likely indicative that the density evolution we are using is too extreme

and the CME density evolution does not trend with R−3.

To get a better idea of how accurate these ratios may be, we also determined the

average ejecta and ambient density and compared that ratio to the model, the values of

which are also in Table 1. These values are all generally in similar ranges, though there

does not seem to be much correlation between the modeled values. This could be indicating

the assumptions of the model, very likely in cd are leading to a distortion of the true density

profiles, but again is likely a sign that either the density should be improved or may just be

too complex of an evolution to simply model.

Interesting to note is that the biggest outlier of the densities is that of the April 2010

CME. In the modeled data, this was the only event in the sample in which a high speed

stream of solar wind was observed in-situ ahead of the ICME, which has long been known
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to correspond to a lower solar wind density (Hundhausen 1972). This would likely give

rise to this large ratio between the CME density and the ambient and show why this CME

propagates more linearly than the other events. However, in the in-situ data, the solar

wind density is indeed below average, but the ratio is not noticeably high, and is even

well below average. With the lower solar wind density, it is possible the CME underwent

more significant expansion by the time the CME reaches L1 causing a lower CME internal

density.

It may be possible to use the white light coronagraph data to calculate the density

inside the the flux rope and use a solar wind model to determine both the initial density

ratio and the ratio between the two as the CME propagates observationally, as well as

gaining a better understanding of how the CME internal density evolves. This goes beyond

the current scope of this paper, but may be attempted in the future to try and further

constrain the model.

4.2. Comparison with Other Models

In general, our ability to predict the two distinct fronts within 3 hours with a variance

of less than 2 hours is a significant improvement over other models. Colaninno et al. (2013),

also using GCS fittings and considering a number of model fits including a similar drag

model, showed an average time error of 8.1 hours with a 6.3 hour variance. Gopalswamy

et al. (2013) used the Empirical Shock Arrival (ESA) Model to accurately predict CME

arrival within 7.3 hours with a 3.2 hour deviation. Möstl et al. (2014) used time-elongation

plots, or j-maps (Sheeley et al. 1999), with an empirical prediction to predict CMEs to an

average absolute error 6.1 hours with a deviation of 5.1 hours. Lastly, using the drag based

model, (Vršnak et al. 2014) predicted arrival times with an average absolute error of 14.8

hours, with deviations on a similar order. Clearly our method improves upon all of these
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results, though it should be noted that given the sample size of events and quality of data

used, all of the results are not an ideal comparison. It still shows the effectiveness of our

method as a proof of concept.

Using our method, as well as the published formulas of the ESA and drag model, we

can compare our results to those, acknowledging that every forecasting technique will be

most effective in the hands of those who developed the technique using their own tracking

methods, and simply plugging our initial velocities into the formulas of the other models

will probably do worse than those modelers themselves.

The numbers for each event are presented in Table 3 and can be viewed graphically in

Figure 15. As can be seen, our method significantly outperforms the others, with perhaps

the most positive thing about it our prediction being the lack of an extreme outlier event

where the prediction is extremely inaccurate. If, moving forward, these results can be

repeated our method will be a massive step forward for space weather forecasting.

Of course the model we have is not currently operational and uses data not available

in realtime, making a comparison to those works that attempt to predict arrivals in real

time is not really fair. In the next section we will detail the hurdles that will have to be

addressed to make real time predictions. It does however, help demonstrate what the ceiling

of effective predictions could be with an ideal set of observational data available in realtime.

4.3. Creating an Operational Model

As we attempt to transfer this model into an operational mode, there will be a few

difficulties that will have to be overcome. The most obvious of these is the difficulty in

getting accurate heights of the fronts in real-time. All observations have currently been

performed with science quality data. It will be more difficult to accurately get these
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measurements in real time from the lower quality data available.

The observational part of this technique is also made more difficult by the lack of

a permanent observer somewhere other than L1. From 2006-2014 when STEREO was

consistently providing multiple viewpoints, especially during the 2010- 2013 period of these

events when the STEREO spacecraft was more optimally positioned for observing Earth

directed CMEs, it was much easier to create an accurate reconstruction. For now, we may

be restricted to a cone model using only LASCO data (Na et al. 2013) and it is unknown if

this will be able to provide enough accuracy for our model. This concern is one facing all

space weather forecasting operations, and the accuracy of our method using stereoscopic

techinques is one more piece of evidence indicating why an L5 mission with a coronagraph

and heliospheric imager would be a great benefit to the space weather community.

Another issue will be our ability to predict the solar wind. For this method, we have

used ACE measurements ahead of the transients to get an average value for the solar wind

speed. In real-time, this would obviously be impossible and we would have to estimate the

solar wind speed. The widely-used Wang Sheeley Arge (WSA) model (Arge & Pizzo 2000)

can be used to predict solar wind speed in the heliosphere, and is being continually refined

to provide more accurate results (Hickmann et al. 2015). Using a model, provided it is

accurate, would also give us the added benefit of, rather than assuming a constant solar

wind speed in front of the CME, having a height-dependent solar wind speed that could

account for the CME interacting with varied solar wind regimes.

The last issue is an acknowledgement that we are focusing only on simple events

propagating freely in the heliosphere. For multiple CME events such as the well studied

August 2010 events (Webb et al. 2013), this method as currently constructed will not be

able to properly capture the propagation. However, before these complex events can be

understood, we must make sure our ability to reconstruct the most basic CMEs is complete.
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We also plan to perform further comparison with numerical models, such as ENLIL

(Odstrčil & Pizzo 1999) for purposes of cross-validation. Not only can we test the ability

of our model to capture the propagation of observed CMEs, we can also test the ability to

capture the propagation of the modeled CMEs. which may also serve to improve the inputs

used in those models. A collaborative effort between observers and modelers can greatly

benefit those in each field.

Despite these potential operational problems, what we have shown here is useful as a

proof of concept for the method, and could be the first step in providing valuable insight

to the the heliophysics community. If our model is indeed able to consistently provide

accurate predictions for simple events, it means that even if our exact method can’t be put

into operation, it is at least accurately capturing the physics of a CME in the heliosphere

making it a valuable addition to the space weather community.

5. Conclusions

For seven CMEs observed by STEREO and ACE, we have developed a method based

upon a height-dependent Γ drag model that accurately predicts the arrival of the presumed

flux rope in-situ. We also combine measurements of the sheath front and ejecta to calculate

the standoff-distance in the heliosphere, which we fit linearly. This provides an accurate

arrival prediction within 6 hours for all events for the compression front, and does better for

faster events that arrive at L1 within 70 hours. All the predictions for the compression front

on the slowest events are consistently early, so it is possible we can use a more accurate

function that will slow the sheath front down properly. Still, this error is as good as or

better than all currently used models, with the added distinction of differentiating the two

different fronts.
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Not only does this distinction of the ejecta and sheath front improve the forecasting

capabilities of the model, it also allows us to infer more of the physics governing CME

evolution. In addition to the ability to infer the ratio of CME density to the ambient,

the more we study the standoff distance evolution it will tell us more about the exact

mechanism through which the sheath wave is generated and propagated. From the

geometric correction we apply, we can also say that, assuming the GCS model is indeed an

accurate representation of the ejecta, that the ejecta loses about 65% of its curvature by

the time it reaches L1.

We not only compare arrival times, but also relative densities and arrival velocities to

try and prove that, in addition to being able to accurately predict the arrivals our model

also accurately captures the propagation of the CME in the heliosphere. This is especially

true for the CME ejecta or flux rope, for which we have a physical basis for the model we

use to interpret our measurements. For the sheath front, the model is more ad hoc and may

have more room for improvement and physical refinement.

This work is supported by NSF AGS-1156120 and NSF AGS-1249270 We acknowledge

the use of data from the STEREO mission, the SOHO mission and also the use of ACE

data.
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Fig. 1.— Model fitting of CME ejecta and shock front. Images at 17:54 UT on July 12, 2012

from STEREO A COR2 (Left) and STEREO B COR2 (Right) are shown along without

(top) and with (bottom) the raytrace mesh. The green mesh shows the GCS fitting to the

CME ejecta, while the red mesh shows the spheroid fitting to the CME shock front.
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Fig. 2.— Solar wind data from ACE for the July 14 ICME. The sheath onset is denoted

with the red line, the ejecta with the solid blue line and the passing of the ejecta with the

dotted blue line. Plots from top to bottom show the Dst index, total magnetic field and

the z component of the magnetic field (red), total velocity, density, temperature and the

expected temperature (red) based on the velocity, and the plasma β. The sheath arrival

was determined by the sudden increases in B, V, and T, while the ejecta boundaries were

constrained mostly by the period of low plasma β.
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Fig. 3.— The calculated quantities of the GCS model used to get the height of the CME

along the propagation direction of the eruption. The dashed curve represents the ejecta

central axis.
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Fig. 4.— The effect of the geometric correction as a function of the θ angle between the

CME nose and the Sun- Earth line.
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Fig. 5.— The standoff-distance of the July 2012 CME as determined by subtracting the

ejecta measurements from the shock measurements. The solid line is the linear fit to the

data.
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Fig. 6.— The measurements for the ejecta (crosses) and sheath front (stars) for the July

2012 CME. The derived profiles for each front (red solid line, blue dashed line respectively)

are also plotted. The maximum height in each plot is the arrival point of the front at ACE.
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Fig. 7.— The velocity of the two fronts for the July 2012 CME. The sheath front is given

by the dashed blue line, the ejecta by the solid blue line.
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Fig. 8.— The derived Γ profile for the July 2012 CME is shown with the solid line, as

well as the ejecta Γ values determined at each point by fitting the measurements up to each

individual point. It should be noted that the derived Γ profile is not being fit to the measured

values, but rather the measured values are used to constrain the theoretical Γ profile.
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Fig. 9.— The predicted vs. observed arrival for the ejecta for each event. The solid line

represents perfect accuracy in prediction.
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Fig. 10.— The predicted vs. observed velocities at L1 for the ejecta for each event. The

solid line represents perfect accuracy in prediction.
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Fig. 11.— The predicted vs. observed arrival for the sheath front for each event. The solid

line represents perfect accuracy in prediction.
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Fig. 12.— The predicted vs. observed velocities at L1 for the sheath front for each event.

The solid line represents perfect accuracy in prediction.
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ICME Datea ∆TSF
b ∆TEJ

b ∆VSF
c ∆VEJ

c ρratio(R(0))d ρratio(L1)
d ρratio(ACE)e

04/05/2010 1.89 0.38 23.3 26.4 32.17 0.91 0.41

05/24/2010 5.69 2.52 96.3 38.1 6.70 0.15 1.21

09/14/2011 6.68 4.39 15.8 13.0 3.24 0.09 0.71

07/12/2012 0.84 1.51 24.8 22.4 18.61 0.41 0.61

09/28/2012 0.34 0.9 61.6 45.6 10.31 0.31 0.97

10/27/2012 4.99 0.28 24.5 19.0 14.78 0.47 0.67

03/15/2013 3.91 0.26 22.9 7.2 5.98 0.21 0.38

Average 3.47 1.46 38.5 24.5 13.11 0.36 0.80

RMS 1.58 0.76 17.9 12.9 - - -

Table 2: a- The date of the ICME arrival at ACE

b- The absolute value of the difference in hours between the predicted and observed arrival

of the sheath (SF) and Ejecta(EJ)

c- The difference in velocity in km/s between the speed of each feature as predicted by the

model and as compared to the average speed observed for each feature in-situ

d- The derived density ratio from the model at the initial height of observation and at the

point where the ejecta reaches L1 e- The ratio of the densities of the ejecta and solar wind,

as determined from the average values of each from ACE.



– 40 –

Fig. 13.— The difference in the arrival of the ejecta at L1 by varying the initial density ratio

ranges among the set of modeled values obtained from fits to measurement.
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Fig. 14.— The profiles for the ratio of ρCME to ρsw for each of the seven events, as given by

the Γ fittings and Equation 7.



– 42 –

ICME Date Constrained Drag

Model

ESA Static DBM

04/05/2010 -1.89 -11.6 -14.0

05/24/2010 -5.69 7.91 10.6

09/14/2011 -6.68 -11.5 -6.00

07/12/2012 0.84 17.4 2.88

09/28/2012 -0.34 32.9 22.5

10/27/2012 -4.99 -3.70 2.11

03/15/2013 3.91 8.00 -1.45

Average 3.47 13.27 8.5

RMS 1.58 6.04 4.20

Table 3: A comparison of the error in hours between our method and the ESA and DBM

models for each event. The average values for each model is the average of the absolute value

of the error for each event.
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Fig. 15.— A comparison of the arrival times for the sheath front with our method (blue),

the ESA method (yellow) and DBM model (red). A negative error time corresponds to the

predicted arrival being after the observed arrival.
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