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Introduction

● Magnetohydrodynamics (MHD) describes the 
macroscopic behavior of a plasma
– Macroscopic means acting on length scales larger 

than plasma lengths scales (i.e. Debye Length or 
Larmor radius)

● At the end of the chapter non-dimensional 
equations in terms of the Alfven time will be 
arrived at, which will be used throughout the 
rest of the book



  

MHD Equations-Momentum Terms

● To derive the momentum equation, the forces 
acting on a fluid element     with mass 

● Lorentz Force: 
– On macroscopic fields, charge neutrality is enforced

● Thermal Pressure Force:
– Assume approximate thermodynamic equilibrium so 

pressure tensor is isotropic and force is surface 
integral of fluid element

● Gravitational Force:

δV ρδV
Quasi-Neutrality: 

q ≈ 0



  

MHD Equations-Momentum Terms

● Viscous Force:
– Another surface integral where σ is the viscous-

stress tensor

● All of these forces acting on the same fluid 
element are added to give the momentum 
equation



  

Pressure and Induction

● The Lorentz Force can also be written as

● The first term in the stress tensor is isotropic 
and together with thermal pressure gives the 
total pressure

● The ratio between these terms is the important 
plasma β parameter



  

Magnetic Induction Equation

● The time derivative of the magnetic field is 
given by Faraday's Law

● Where the Electric field can be obtained from 
Ohm's Law

● And the magnetic field can be substituted for 
current from Ampere's Law j=    x B, this 
leaves a      x (v x B) and a      x (    x B) which 
yields 

∇
∇ ∇∇



  

Conservation of Mass

● Within a fluid element, the change of mass will 
be given by the flow in and out of the surface 
of the element

● Using Gauss' theorem on the surface integral:

● We will deal largely with incompressible flow, 
so the mass density of an element is constant



  

Dynamic Equation for Pressue
● Assuming the plasma is close to 

thermodynamic equilibrium pressure is coupled 
to ρ and T by the equation of state

● We will assume the ideal gas law is valid for 
dilute plasmas

● Also, conduction will be neglected so the 
change of state can be assumed to be 
adiabatic

● In the limit of incompressible flow, pressure can 
be curled out of dynamic equations (more later)



  

Pressure (Cont.)

● γ is the adiabatic exponent, given by the ratio 
of specific heats

● If heat conduction is not negligible the 
temperature is given by

where κ is the diffusivity. This formula is a very 
simplified form of the processes going on in 
plasma embedded in a magnetic field

● The heat equation, if both conduction and 
dissipation are considered, is given by



  

Rotating Reference Frame

● To conserve angular momentum, astrophysical 
objects rotate

● To describe these systems, a co-rotating 
reference frame is useful

● Substituting dv/dt from the momentum equation

● The other dynamic equations (B and ρ) remain 
the same in the rotating reference frame



  

Incompressibility

● In most work with turbulence, the fluid is 
considered incompressible

● Conditions for incompressibility
– Fluid motion must be slow compared to the fastest 

propagating compressible wave in the direction of 
motion

– Small temporal derivative

●            , so taking the curl of the motion equation 
leads to the vorticity form where 
∇ •v=0



  

Incompressibility (Cont.)

● If the vorticity is calculated, it can be converted 
to velocity via Poisson's equation

● The pressure is now curled out of the 
equation, and is now a calculated quantity 
rather than an independent variable



  

Compressibility Conditions

● For high-β plasma, the momentum equation 
becomes

● M
S
 is the accoustic Mach Number, c

S
 is the 

sound speed given by and L is a 
gradient scale.

● The fluid motion is incompressible if M
S
 << 1



  

Compressibility Conditions

● For low-β plasma the Magnetic pressue dominates 
motion and

● M
A
 is the Alfven Mach Number, and v

A
 is the Alfven 

speed speed given by

● Again if M
A 
<< 1 the and the motion is perpendicular to a 

strong magnetic field, the fluid is incompressible
● Essentially, regardless of whether the Thermal or 

Magnetic pressure is dominant, if the flow velocity is 
much less than the characteristic wave speed the fluid is 
compressible

 



  

Boussinesq Approximation

● In a sufficient gravity, pressure and density are in 
hydrostatic equilibrium   and the magnetic 
field is negligible.

● The gradient in the hydrostatic equilibrium 
equation provides a typical length scale, focusing 
on a layer of plasma much smaller than this, the 
system can be considered approximately 
homogeneous 

● This quasi-homogeneity means the deviations of 
the dynamic variables            do not significantly 
differ from their equilibrium values and is the 
bases of the Boussinesq Approximation 

ρ̃ , p̃ , B̃



  

Boussinesq Approximation

● The differences in the dynamic variables are still 
finite however, so the motion equation still has non-
linear terms

● Considering perturbations acting on hydrostatic 
equilibrium and remember L/L

G 
<< 1, the pressure 

change can be shown to be negligible 



  

Boussinesq Approximation

● Using the ideal-gas law, we can now relate the 
pressure fluctuation to the temperature 
fluctuation

● For incompressible motions, the temperature 
fluctuation is given by 



  

MHD in 2D



  

Conservation Laws-Fluid Invariants

● The momentum equation in conservation form

● Total Energy Density



  

The Energy Equation

● Integrating the energy equation:



  

Cross-Helicity

● Another invariant is the cross-helicity

● with cross-helicity flux

● and cross-helicity dissipation



  

Magnetic Invariants-Flux

● Magnetic Flux defined by
● Applying Stokes' Theorem to the induction eq.:

 

● So the time derivative of the flux is

● The conductivity is assumed to be infinite, so 
the magnetic flux is conserved 



  

Magnetic Invariants-Helicity

● Since the magnetic field is frozen into the 
plasma, the field is complex. The complexity is 
given by the helicity

● To make sure, the helicity is gauge invariant

● In some cases this helicity is gauge invariant, 
but in actual cases such as open field lines 
extending to the solar wind and and bound to 
the photosphere, this helicity is not gauge 
invariant. An alternative helicity was proposed



  

Helicity

● Inserting Farday's Law into the helicity 
equation:

● and then and using the boundary condition 
B

n
=0 and Ohm's Law:

● which again is 0 for infinite conductivity



  

2D Invariants



  

Equilibrium Configurations

● While the book deals with turbulence, 
equilibrium is still important to consider

● In equilibrium, v=0 and the motion equation 
reduces to

● In the case of a strong magnetic field, gravity 
is negligible, so the equation of motion is just   
j x B with the pressure defined by magnetic 
pressure                 in a plane

● A specific magnetic equilibrium of interest in 
astrophysical plasma is a force free field when 
j x B = 0. If j=λB it is a linear force free field 



  

Equilibrium in Absence of Strong 
Magnetic Field

● In the absence of a strong magnetic field a 
pressure gradient and for polytropic 
pressure and assuming

● When γ=1, this reduces to the barometric 
density profile  



  

Linear Waves in a Homogeneous 
Magnetized System

● The basic elements of turbulence are formed 
by waves in the plasma, oscillating about an 
average state

● In a homogeneous system defined by p
0
, ρ

0
, 

embedded in magnetic field B
0
, for small 

changes the MHD equations are 
linear 

● Performing a Fourier transform    in 
space and time yields



  

Waves in a Homogeneous 
Mangetized System (Cont.)

● Performing substitutions on v
1
, B

1
, and p

1
, these three 

equations become one equation

● The k·v term represents longitudinal, compressible 
waves and the k x v term represents transverse 
waves

● By choosing the coordinate system                       and 
writing the equation in matrix form

giving dispersion relation:



  

Wave Modes

● Alfven Wave:                    incompressible, motion 
perpendicular to B

0
, magnetic perturbation is given by 

             and phase speed given by the Alfven speed, 
V

A

● Fast Mode Wave:                                                      
also called the compressible Alfven Wave. The phase 
velocity is given by                        fastest for motion 
perpendicular to B

0
. 

● For parallel propagation the wave is given by                  
      

In low-β plasma merges with the Alfven wave. For high-
β plasma merges with the nonmagnetic sound wave



  

Wave Modes (Cont.)

● Slow Mode Wave:                                              
with a phase speed of               For perpendicular 
propagation, there is no restoring force, 
corresponding to a quasi-static equilibrium change

● For parallel propagation the phase velocity 
reaches its upper limit

If V
A 
>  C

S 
> the mode becomes the nonmagetic 

sound wave, otherwise the Alfven wave                  
● For all wave modes, this relation for phase 

velocity always holds:



  

Waves in a Stratified System

● For perturbations in a stratified equilibrium 
ρ

0
(z) under the influence of gravity, magnetic 

fields and viscosity are neglected. Again doing 
a Fourier transfer gives

● Using   and curl with the relation                  
                                                                      
which leads to dispersion relation 



  

Waves in a Stratified System (Cont.)

● Of the terms in that equation, the Brunt-
Vaisala frequency, N is given by

● The frequency of perturbations is given by

● In the case of a non-rotating plasma, all that is 
left is    

corresponding to a gravity wave with a 
frequency well under the sound speed, making 
the waves incompressible. This is called 
stable stratification because the lightest fluids 
are on top. 



  

Rayleigh-Taylor Instability and 
Internal Waves

● In the case that           the heavier fluids are on 
top and the perturbation is not a propagating 
wave but instead grows exponentially and is 
the Rayleigh-Taylor instability

● Fast rotation will quickly stabilize the Rayleigh-
Taylor instability

● In the case that N=0, the wave is the internal 
wave with frequency is given by



  

Elsasser Fields and Alfven Time 
Normalization

● Since turbulence deals largely with incompressible 
plasma, the Alfven Mode is the most important linear 
MHD mode

● Writing the nonlinear MHD equations in terms of 
Elsasser Fields:

● The equation is simpler if normalized by the Alfven 
Time

● The magnetic diffusivity is the inverse of the Lundquist 
number

● This makes the Elsasser Field: 



  

Elsasser Fields (Cont.)

● Combining the equation of motion and the 
magnetic induction equation while assuming 
incompressibility for the Elsasser field gives

● Linearizing the field about a uniform magnetic 
field B

0
 and neglecting dissipation:

● z
_ describes motion in the B

0
 direction and z+ 

describes motion in the anti-B
0
 direction. There 

is only cross-coupling of z
_ 
and z+



  

Ideal Invariants in Terms of Elsasser 
Fields

● The invariants of Elsasser fields are

● Another important quantity is the difference 
between the kinetic and magnetic energies, 
the residual energy
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